Suppr超能文献

一种通过动物模型在体内验证的全定制完全可植入式人工耳蜗系统。

A full-custom fully implantable cochlear implant system validated in vivo with an animal model.

作者信息

Uluşan Hasan, Yüksel M Berat, Topçu Özlem, Yiğit H Andaç, Yılmaz Akın M, Doğan Mert, Gülhan Yasar Nagihan, Kuyumcu İbrahim, Batu Aykan, Göksu Nebil, Uğur M Birol, Külah Haluk

机构信息

Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.

METU-MEMS Research and Applications Center, Ankara, Turkey.

出版信息

Commun Eng. 2024 Sep 14;3(1):132. doi: 10.1038/s44172-024-00275-4.

Abstract

Realizations of fully implantable cochlear implants (FICIs) for providing adequate solution to esthetic concerns and frequent battery replacement have lacked of addressing system level criteria as a complete device. Here, we present a full-custom FICI that considers design of both an implantable sensor for wide range sound sensing and a signal conditioning circuit for electrical stimulation of the auditory nerve. The microelectromechanical system (MEMS)-based acoustic sensor utilizes multiple cantilever beam structures to sense and filter the mechanical vibrations on the ossicular chain. The area optimized bilayer design of the piezoelectric sensor met with the volume limitation in the middle ear while achieving high signal-to-noise-ratio. The sensor outputs are processed by a current mode low-power signal conditioning circuit that stimulates the auditory neurons through intracochlear electrodes. The FICI is validated with an in vivo model where the electrical auditory brainstem response (eABR) of the animal was observed while applying sound excitation. The eABR results demonstrate that the system is able to evoke responses in the auditory nerves of a guinea pig for sound range of 45-100 dB SPL within the selected frequency bands.

摘要

为解决美观问题和频繁更换电池提供充分解决方案的完全植入式人工耳蜗(FICI),一直缺乏将系统级标准作为一个完整设备来考量。在此,我们展示了一种全定制FICI,它兼顾了用于宽范围声音感知的植入式传感器设计以及用于听觉神经电刺激的信号调理电路设计。基于微机电系统(MEMS)的声学传感器利用多个悬臂梁结构来感知和过滤听骨链上的机械振动。压电传感器的面积优化双层设计在满足中耳体积限制的同时实现了高信噪比。传感器输出由电流模式低功耗信号调理电路处理,该电路通过鼓阶电极刺激听觉神经元。通过体内模型对FICI进行了验证,在施加声音刺激时观察动物的电听觉脑干反应(eABR)。eABR结果表明,该系统能够在选定频段内,对45 - 100 dB SPL的声音范围在豚鼠的听觉神经中诱发反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3fb/11401833/6222fafbf81e/44172_2024_275_Fig1_HTML.jpg

相似文献

1
A full-custom fully implantable cochlear implant system validated in vivo with an animal model.
Commun Eng. 2024 Sep 14;3(1):132. doi: 10.1038/s44172-024-00275-4.
2
Piezoelectric Multi-Channel Bilayer Transducer for Sensing and Filtering Ossicular Vibration.
Adv Sci (Weinh). 2024 Apr;11(16):e2308277. doi: 10.1002/advs.202308277. Epub 2024 Feb 21.
5
A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.
IEEE J Solid-State Circuits. 2015 Jan 1;50(1):214-229. doi: 10.1109/JSSC.2014.2355822.
6
An Intracochlear Pressure Sensor as a Microphone for a Fully Implantable Cochlear Implant.
Otol Neurotol. 2016 Dec;37(10):1596-1600. doi: 10.1097/MAO.0000000000001209.
7
Design of Piezoelectric Dual-Bandwidth Accelerometers for Completely Implantable Auditory Prostheses.
IEEE Sens J. 2023 Jul;23(13):13957-13965. doi: 10.1109/jsen.2023.3276271. Epub 2023 May 18.

本文引用的文献

1
Dimensions of the Posterior Tympanotomy and Round Window Visibility Through the Facial Recess: Cadaveric Temporal Bone Study Using a Novel Digital Microscope.
Indian J Otolaryngol Head Neck Surg. 2022 Aug;74(Suppl 1):714-718. doi: 10.1007/s12070-021-02512-0. Epub 2021 Mar 22.
2
A technical review and evaluation of implantable sensors for hearing devices.
Biomed Eng Online. 2018 Feb 13;17(1):23. doi: 10.1186/s12938-018-0454-z.
3
Biomimetic Artificial Basilar Membranes for Next-Generation Cochlear Implants.
Adv Healthc Mater. 2017 Nov;6(21). doi: 10.1002/adhm.201700674. Epub 2017 Sep 11.
4
A new floating piezoelectric microphone for the implantable middle ear microphone in experimental studies.
Acta Otolaryngol. 2016 Dec;136(12):1248-1254. doi: 10.1080/00016489.2016.1201590. Epub 2016 Jul 8.
5
A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.
IEEE J Solid-State Circuits. 2015 Jan 1;50(1):214-229. doi: 10.1109/JSSC.2014.2355822.
7
Studies of MEMS Acoustic Sensors as Implantable Microphones for Totally Implantable Hearing-Aid Systems.
IEEE Trans Biomed Circuits Syst. 2009 Oct;3(5):277-85. doi: 10.1109/TBCAS.2009.2032267.
8
MEMS capacitive accelerometer-based middle ear microphone.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3283-92. doi: 10.1109/TBME.2012.2195782. Epub 2012 Apr 20.
9
Cochlear implants: current status and future potential.
Expert Rev Med Devices. 2011 May;8(3):389-401. doi: 10.1586/erd.11.12.
10
Cochlear implants: system design, integration, and evaluation.
IEEE Rev Biomed Eng. 2008;1:115-42. doi: 10.1109/RBME.2008.2008250. Epub 2008 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验