Department of Robotics Engineering, DGIST-ETH Microrobot Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea.
Department of Otorhinolaryngology-Head and Neck Surgery, Ajou University College of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
Adv Healthc Mater. 2017 Nov;6(21). doi: 10.1002/adhm.201700674. Epub 2017 Sep 11.
Patients with sensorineural hearing loss can recover their hearing using a cochlear implant (CI). However, there is a need to develop next-generation CIs to overcome the limitations of conventional CIs caused by extracorporeal devices. Recently, artificial basilar membranes (ABMs) are actively studied for next-generation CIs. The ABM is an acoustic transducer that mimics the mechanical frequency selectivity of the BM and acoustic-to-electrical energy conversion of hair cells. This paper presents recent progress in biomimetic ABMs. First, the characteristics of frequency selectivity of the ABMs by the trapezoidal membrane and beam array are addressed. Second, to reflect the latest research of energy conversion technologies, ABMs using various piezoelectric materials and triboelectric-based ABMs are discussed. Third, in vivo evaluations of the ABMs in animal models are discussed according to the target position for implantation. Finally, future perspectives of ABM studies for the development of practical hearing devices are discussed.
感音神经性听力损失患者可以使用人工耳蜗(CI)来恢复听力。然而,需要开发新一代的 CI 来克服由于体外设备引起的传统 CI 的局限性。最近,人工基底膜(ABM)正在积极研究下一代 CI。ABM 是一种声学换能器,可模拟 BM 的机械频率选择性和毛细胞的声电能量转换。本文介绍了仿生 ABM 的最新进展。首先,介绍了梯形膜和梁阵列的 ABM 频率选择性的特点。其次,为了反映能量转换技术的最新研究,讨论了使用各种压电材料和基于摩擦电的 ABM 的 ABM。第三,根据植入的目标位置,讨论了动物模型中 ABM 的体内评估。最后,讨论了 ABM 研究对于开发实用听力设备的未来前景。