Zare Yasser, Munir Muhammad Tajammal, Rhee Kyong Yop
Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait.
Sci Rep. 2024 Sep 14;14(1):21514. doi: 10.1038/s41598-024-72698-0.
Herein, we offer a model for estimating the tunneling conductivity of polymer-graphene nanocomposites based on interfacial properties, the proportion of networked graphene, and the wettability value between the polymer medium and the filler. The interfacial properties are influenced by the minimum diameter of the nanosheets (D), whose conductivity can be transferred to the medium via interfacial conduction (τ). These parameters impact the actual aspect ratio and the volume proportion of the filler, which, in turn, control the onset of percolation and the proportion of nanosheets in the network. We apply all these parameters to develop a novel model for estimating the conductivity of graphene systems. The predictions obtained from this model across different parameter ranges are discussed. Additionally, experimental measurements are employed to evaluate the proposed equations. High filler conductivity enhances the nanocomposite's conductivity by a strong interfacial conduction. However, the conductivity cannot be transferred to the polymer medium under condition of weak interfacial conduction. Furthermore, a robust interphase and a small D contribute to increased conductivity. Ultimately, the developed equations accurately predict the onset of percolation and conductivity, validated by real experimental data.
在此,我们提供了一个基于界面性质、网络化石墨烯的比例以及聚合物介质与填料之间的润湿性值来估算聚合物-石墨烯纳米复合材料隧穿电导率的模型。界面性质受纳米片最小直径(D)的影响,其电导率可通过界面传导(τ)转移到介质中。这些参数影响填料的实际长径比和体积比例,进而控制渗流的起始以及网络中纳米片的比例。我们应用所有这些参数来开发一个估算石墨烯体系电导率的新模型。讨论了该模型在不同参数范围内得到的预测结果。此外,采用实验测量来评估所提出的方程。高填料电导率通过强界面传导提高纳米复合材料的电导率。然而,在界面传导较弱的情况下,电导率无法转移到聚合物介质中。此外,一个强健的界面相和较小的D有助于提高电导率。最终,所开发的方程准确地预测了渗流的起始和电导率,并得到了实际实验数据的验证。