Suppr超能文献

利用 Xception 多头注意力预测胎儿脑龄。

Prediction of fetal brain gestational age using multihead attention with Xception.

机构信息

Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

Department of Data Analytics & Information Systems, Utah State University, Old Main Hill, Logan, UT, 84322 (435) 797-1000, USA.

出版信息

Comput Biol Med. 2024 Nov;182:109155. doi: 10.1016/j.compbiomed.2024.109155. Epub 2024 Sep 14.

Abstract

Accurate gestational age (GA) prediction is crucial for monitoring fetal development and ensuring optimal prenatal care. Traditional methods often face challenges in terms of precision and prediction efficiency. In this context, leveraging modern deep learning (DL) techniques is a promising solution. This paper introduces a novel DL approach for GA prediction using fetal brain images obtained via magnetic resonance imaging (MRI), which combines the strength of the Xception pretrained model with a multihead attention (MHA) mechanism. The proposed model was trained on a diverse dataset comprising 52,900 fetal brain images from 741 patients. The images encompass a GA ranging from 19 to 39 weeks. These pretrained models served as feature extraction components during the training process. The extracted features were subsequently used as the inputs of different configurable MHAs, which produced GA predictions in days. The proposed model achieved promising results with 8 attention heads, 32 dimensionality of the key space and 32 dimensionality of the value space, with an R-squared (R) value of 96.5 %, a mean absolute error (MAE) of 3.80 days, and a Pearson correlation coefficient (PCC) of 98.50 % for the test set. Additionally, the 5-fold cross-validation results reinforce the model's reliability, with an average R of 95.94 %, an MAE of 3.61 days, and a PCC of 98.02 %. The proposed model excels in different anatomical views, notably the axial and sagittal views. A comparative analysis of multiple planes and a single plane highlights the effectiveness of the proposed model against other state-of-the-art (SOTA) models reported in the literature. The proposed model could help clinicians accurately predict GA.

摘要

准确的孕周(GA)预测对于监测胎儿发育和确保最佳产前护理至关重要。传统方法在精度和预测效率方面常常面临挑战。在这种情况下,利用现代深度学习(DL)技术是一种很有前途的解决方案。本文提出了一种使用磁共振成像(MRI)获得的胎儿脑图像进行 GA 预测的新型 DL 方法,该方法结合了 Xception 预训练模型和多头注意力(MHA)机制的优势。该模型在一个包含 741 名患者的 52900 张胎儿脑图像的多样化数据集上进行了训练。图像涵盖了 19 至 39 周的 GA。这些预训练模型作为特征提取组件在训练过程中使用。提取的特征随后作为不同可配置 MHA 的输入,以天为单位生成 GA 预测。该模型在使用 8 个注意力头、96.5%的 R 平方(R)值、3.80 天的平均绝对误差(MAE)和 98.50%的 Pearson 相关系数(PCC)时取得了有希望的结果,用于测试集。此外,5 倍交叉验证结果增强了模型的可靠性,平均 R 为 95.94%、MAE 为 3.61 天和 PCC 为 98.02%。该模型在不同的解剖视图中表现出色,特别是轴向和矢状视图。多个平面和单个平面的比较分析突出了与文献中报道的其他最先进(SOTA)模型相比,该模型的有效性。该模型可以帮助临床医生准确预测 GA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验