Mazher Moona, Qayyum Abdul, Puig Domenec, Abdel-Nasser Mohamed
Departament d'Enginyeria Informatica i Matemátiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 9RT, UK.
Entropy (Basel). 2022 Nov 23;24(12):1708. doi: 10.3390/e24121708.
To completely comprehend neurodevelopment in healthy and congenitally abnormal fetuses, quantitative analysis of the human fetal brain is essential. This analysis requires the use of automatic multi-tissue fetal brain segmentation techniques. This paper proposes an end-to-end automatic yet effective method for a multi-tissue fetal brain segmentation model called IRMMNET. It includes a inception residual encoder block (EB) and a dense spatial attention (DSAM) block, which facilitate the extraction of multi-scale fetal-brain-tissue-relevant information from multi-view MRI images, enhance the feature reuse, and substantially reduce the number of parameters of the segmentation model. Additionally, we propose three methods for predicting gestational age (GA)-GA prediction by using a 3D autoencoder, GA prediction using radiomics features, and GA prediction using the IRMMNET segmentation model's encoder. Our experiments were performed on a dataset of 80 pathological and non-pathological magnetic resonance fetal brain volume reconstructions across a range of gestational ages (20 to 33 weeks) that were manually segmented into seven different tissue categories. The results showed that the proposed fetal brain segmentation model achieved a Dice score of 0.791±0.18, outperforming the state-of-the-art methods. The radiomics-based GA prediction methods achieved the best results (RMSE: 1.42). We also demonstrated the generalization capabilities of the proposed methods for tasks such as head and neck tumor segmentation and the prediction of patients' survival days.
为了全面理解健康胎儿和先天性异常胎儿的神经发育情况,对人类胎儿大脑进行定量分析至关重要。这种分析需要使用自动多组织胎儿脑部分割技术。本文提出了一种用于多组织胎儿脑部分割模型的端到端自动且有效的方法,称为IRMMNET。它包括一个初始残差编码器块(EB)和一个密集空间注意力(DSAM)块,这有助于从多视图MRI图像中提取多尺度胎儿脑组织相关信息,增强特征重用,并大幅减少分割模型的参数数量。此外,我们提出了三种预测胎龄(GA)的方法——使用3D自动编码器进行GA预测、使用放射组学特征进行GA预测以及使用IRMMNET分割模型的编码器进行GA预测。我们的实验是在一个包含80个不同胎龄(20至33周)的病理和非病理磁共振胎儿脑体积重建数据集上进行的,这些数据集被手动分割为七个不同的组织类别。结果表明,所提出的胎儿脑部分割模型的Dice评分为0.791±0.18,优于现有最先进的方法。基于放射组学的GA预测方法取得了最佳结果(均方根误差:1.42)。我们还展示了所提出方法对头颈部肿瘤分割和患者生存天数预测等任务的泛化能力。