Suppr超能文献

使用卷积神经网络自动生成腰椎神经的弥散张量成像。

Automatic generation of diffusion tensor imaging for the lumbar nerve using convolutional neural networks.

机构信息

Department of Medical Engineering, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Orthopaedic Surgery, Shimoshizu National Hospital, 934-5, Shikawatashi, Yotsukaido, Chiba 284-0003, Japan.

出版信息

Magn Reson Imaging. 2024 Dec;114:110237. doi: 10.1016/j.mri.2024.110237. Epub 2024 Sep 13.

Abstract

【PURPOSE】: Diffusion Tensor Imaging (DTI) with tractography is useful for the functional diagnosis of degenerative lumbar disorders. However, it is not widely used in clinical settings due to time and health care provider costs, as it is performed manually on hospital workstations. The purpose of this study is to construct a system that extracts the lumbar nerve and generates tractography automatically using deep learning semantic segmentation. 【METHODS】: We acquired 839 axial diffusion weighted images (DWI) from the DTI data of 90 patients with degenerative lumbar disorders, and segmented the lumbar nerve roots using U-Net, a semantic segmentation model. Using five architectural models, the accuracy of the lumbar nerve root segmentation was evaluated using a Dice coefficient. We also created automatic scripts from three commercially available software tools, including MRICronGL for medical image viewing, Diffusion Toolkit for reconstruction of the DWI data, and Trackvis for the creation of the tractography, and compared the time required to create the tractography, and evaluated the quality of the automated tractography was evaluated. 【RESULTS】: Among the five models, the architectural model Resnet34 performed the best with a Dice = 0.780. The creation time for the automatic lumbar nerve tractography was 191 s, which was significantly shorter by 235 s than the manual time of 426 s (p < 0.05). Furthermore, the agreement between manual and automated tractography was 3.67 ± 1.53 (satisfactory). 【CONCLUSIONS】: Using deep learning semantic segmentation, we were able to construct a system that automatically extracted the lumbar nerve and generated lumbar nerve tractography. This technology makes it possible to analyze lumbar nerve DTI and create tractography automatically, and is expected to advance the clinical applications of DTI for the assessment of the lumbar nerve.

摘要

【目的】:弥散张量成像(DTI)与束追踪对于退行性腰椎疾病的功能诊断很有用。然而,由于时间和医疗服务提供者成本的原因,它在临床环境中并未得到广泛应用,因为它是在医院工作站上手动进行的。本研究的目的是构建一个使用深度学习语义分割自动提取腰椎神经并生成束追踪的系统。

【方法】:我们从 90 例退行性腰椎疾病患者的 DTI 数据中获取了 839 张轴向弥散加权图像(DWI),并使用 U-Net 语义分割模型对腰椎神经根进行分割。使用五个架构模型,通过 Dice 系数评估腰椎神经根分割的准确性。我们还从三个商业可用的软件工具创建了自动脚本,包括用于医学图像查看的 MRICronGL、用于重建 DWI 数据的 Diffusion Toolkit 以及用于创建束追踪的 Trackvis,并比较了创建束追踪所需的时间,评估了自动束追踪的质量。

【结果】:在五个模型中,Resnet34 架构模型表现最好,Dice 值为 0.780。自动腰椎神经束追踪的创建时间为 191s,比手动时间 426s 显著缩短了 235s(p<0.05)。此外,手动和自动束追踪之间的一致性为 3.67±1.53(满意)。

【结论】:通过使用深度学习语义分割,我们构建了一个能够自动提取腰椎神经并生成腰椎神经束追踪的系统。该技术使得分析腰椎神经 DTI 并自动创建束追踪成为可能,有望推进 DTI 在评估腰椎神经方面的临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验