Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.
Neuroimage. 2020 Oct 1;219:117017. doi: 10.1016/j.neuroimage.2020.117017. Epub 2020 Jun 3.
Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue microstructure and structural connectivity in the living human brain. Nonetheless, the angular sampling requirement for DTI leads to long scan times and poses a critical barrier to performing high-quality DTI in routine clinical practice and large-scale research studies. In this work we present a new processing framework for DTI entitled DeepDTI that minimizes the data requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b = 0) image and six DWI volumes sampled along optimized diffusion-encoding directions, along with T-weighted and T-weighted image volumes, to the residuals between the input and high-quality output b = 0 image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI leverages the redundancy in local and non-local spatial information and across diffusion-encoding directions and image contrasts in the data. The performance of DeepDTI was systematically quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI metrics from DeepDTI that are comparable to those obtained with two b = 0 images and 21 DWIs for the primary eigenvector derived from DTI and two b = 0 images and 26-30 DWIs for various scalar metrics derived from DTI, achieving 3.3-4.6 × acceleration, and twice as good as those of a state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can be accurately identified from the tractography of DeepDTI results. The mean distance between the core of the major white-matter tracts identified from DeepDTI results and those from the ground-truth results using 18 b = 0 images and 90 DWIs measures around 1-1.5 mm. DeepDTI leverages domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-based tractography, major white-matter tracts identification and tract-specific analysis more feasible for a wider range of neuroscientific and clinical studies.
弥散张量磁共振成像(DTI)在描绘活体人脑组织微观结构和结构连接方面无与伦比。然而,DTI 的角度采样要求导致扫描时间长,成为在常规临床实践和大规模研究中进行高质量 DTI 的关键障碍。在这项工作中,我们提出了一种新的 DTI 处理框架,称为 DeepDTI,它使用数据驱动的监督深度学习,将 DTI 的六个未知量从传统的体素拟合方法所需的六个扩散加权图像(DWIs)最小化到六个。DeepDTI 将输入非扩散加权(b = 0)图像和沿着优化扩散编码方向采样的六个 DWI 体积,以及 T 加权和 T 加权图像体积,映射到输入和高质量输出 b = 0 图像和 DWI 体积之间的残差使用 10 层三维卷积神经网络(CNN)。DeepDTI 的输入和输出是独特的,这不仅使残差学习能够提高 CNN 的性能,而且还能够对生成的高质量 DWI 进行张量拟合,以生成用于束追踪的定向 DTI 指标。DeepDTI 使用的非常深的 CNN 利用了数据中局部和非局部空间信息以及扩散编码方向和图像对比度之间的冗余。根据输出图像的质量、DTI 指标、基于 DTI 的束追踪和束特定分析结果,系统地量化了 DeepDTI 的性能。我们证明了从 DeepDTI 中可以旋转不变且稳健地估计 DTI 指标,这些指标与从 DTI 获得的两个 b = 0 图像和 21 个 DWIs 获得的主要特征向量的指标以及从 DTI 获得的各种标量指标的两个 b = 0 图像和 26-30 个 DWIs 的指标相当,实现了 3.3-4.6×加速,并且在组水平上比最先进的去噪算法要好两倍。从 DeepDTI 结果的束追踪中可以准确识别二十条主要白质束。从 DeepDTI 结果和使用 18 个 b = 0 图像和 90 个 DWIs 的地面实况结果中识别出的主要白质束的核心之间的平均距离约为 1-1.5mm。DeepDTI 利用扩散 MRI 物理的领域知识和深度学习的强大功能,使 DTI、基于 DTI 的束追踪、主要白质束识别和束特定分析更适合更广泛的神经科学和临床研究。