Suppr超能文献

基于血浆外泌体中多个 microRNAs 预测胰腺癌术前治疗反应:机器学习和网络分析的优化。

Preoperative treatment response prediction for pancreatic cancer by multiple microRNAs in plasma exosomes: Optimization using machine learning and network analysis.

机构信息

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

出版信息

Pancreatology. 2024 Nov;24(7):1097-1106. doi: 10.1016/j.pan.2024.09.009. Epub 2024 Sep 10.

Abstract

BACKGROUND/OBJECTIVES: MicroRNAs (miRNAs) are involved in chemosensitivity through their biological activities in various malignancies, including pancreatic cancer (PC). However, single-miRNA models offer limited predictability of treatment response. We investigated whether a multiple-miRNA prediction model optimized via machine learning could improve treatment response prediction.

METHODS

A total of 20 and 66 patients who underwent curative resection for PC after gemcitabine-based preoperative treatment were included in the discovery and validation cohorts, respectively. Patients were classified according to their response to preoperative treatment. In the discovery cohort, miRNA microarray and machine learning were used to identify candidate miRNAs (in peripheral plasma exosomes obtained before treatment) associated with treatment response. In the validation cohort, miRNA expression was analyzed using quantitative reverse transcription polymerase chain reaction to validate its ability to predict treatment response.

RESULTS

In the discovery cohort, six and three miRNAs were associated with good and poor responders, respectively. The combination of these miRNAs significantly improved predictive accuracy compared with using each single miRNA, with area under the curve (AUC) values increasing from 0.485 to 0.672 to 0.909 for good responders and from 0.475 to 0.606 to 0.788 for poor responders. In the validation cohort, improved predictive performance of the miRNA combination over single-miRNA prediction models was confirmed, with AUC values increasing from 0.461 to 0.669 to 0.777 for good responders and from 0.501 to 0.556 to 0.685 for poor responders.

CONCLUSIONS

Peripheral blood miRNA profiles using an optimized combination of miRNAs may provide a more advanced prediction model for preoperative treatment response in PC.

摘要

背景/目的:微小 RNA(miRNA)通过其在各种恶性肿瘤中的生物学活性参与化疗敏感性,包括胰腺癌(PC)。然而,单一 miRNA 模型对治疗反应的预测能力有限。我们研究了通过机器学习优化的多 miRNA 预测模型是否可以提高治疗反应预测。

方法

总共纳入了 20 例和 66 例在吉西他滨为基础的术前治疗后接受根治性切除的 PC 患者,分别纳入发现队列和验证队列。根据患者对术前治疗的反应进行分类。在发现队列中,使用 miRNA 微阵列和机器学习来识别与治疗反应相关的候选 miRNA(在治疗前获得的外周血浆外泌体中)。在验证队列中,使用定量逆转录聚合酶链反应分析 miRNA 表达以验证其预测治疗反应的能力。

结果

在发现队列中,有 6 个和 3 个 miRNA 分别与良好反应者和不良反应者相关。与使用每个单一 miRNA 相比,这些 miRNA 的组合显著提高了预测准确性,良好反应者的 AUC 值从 0.485 增加到 0.672 再增加到 0.909,不良反应者的 AUC 值从 0.475 增加到 0.606 再增加到 0.788。在验证队列中,也证实了 miRNA 组合对单一 miRNA 预测模型的预测性能的改善,良好反应者的 AUC 值从 0.461 增加到 0.669 再增加到 0.777,不良反应者的 AUC 值从 0.501 增加到 0.556 再增加到 0.685。

结论

使用优化的 miRNA 组合的外周血 miRNA 谱可能为 PC 的术前治疗反应提供更先进的预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验