Department of Chemistry, University of Warwick, Coventry, UK.
Warwick Medical School, University of Warwick, Coventry, UK.
Nat Commun. 2024 Sep 15;15(1):8082. doi: 10.1038/s41467-024-52266-w.
Controlling the formation and growth of ice is essential to successfully cryopreserve cells, tissues and biologics. Current efforts to identify materials capable of modulating ice growth are guided by iterative changes and human intuition, with a major focus on proteins and polymers. With limited data, the discovery pipeline is constrained by a poor understanding of the mechanisms and the underlying structure-activity relationships. In this work, this barrier is overcome by constructing machine learning models capable of predicting the ice recrystallisation inhibition activity of small molecules. We generate a new dataset via experimental measurements of ice growth, then harness predictive models combining state-of-the-art descriptors with domain-specific features derived from molecular simulations. The models accurately identify potent small molecule ice recrystallisation inhibitors within a commercial compound library. Identified hits can also mitigate cellular damage during transient warming events in cryopreserved red blood cells, demonstrating how data-driven approaches can be used to discover innovative cryoprotectants and enable next-generation cryopreservation solutions for the cold chain.
控制冰的形成和生长对于成功冷冻保存细胞、组织和生物制剂至关重要。目前,识别能够调节冰生长的材料的努力是通过迭代变化和人类直觉来指导的,主要集中在蛋白质和聚合物上。由于数据有限,发现管道受到对机制和潜在结构-活性关系理解不足的限制。在这项工作中,通过构建能够预测小分子冰重结晶抑制活性的机器学习模型,克服了这一障碍。我们通过实验测量冰的生长来生成一个新的数据集,然后利用结合了最先进描述符和源自分子模拟的特定于领域特征的预测模型。这些模型能够准确地在商业化合物库中识别出有效的小分子冰重结晶抑制剂。鉴定出的化合物也可以减轻冷冻保存的红细胞在短暂升温过程中的细胞损伤,这表明如何使用数据驱动的方法来发现创新的冷冻保护剂并为冷链提供下一代冷冻保存解决方案。