Suppr超能文献

基于临床、生化数据及超声特征的ACR TI-RADS 4类结节诊断列线图模型

Diagnostic Nomogram Model for ACR TI-RADS 4 Nodules Based on Clinical, Biochemical Data and Sonographic Patterns.

作者信息

Wang Yongheng, Tang Yao, Luo Ziyu, Li Jianhui, Li Wenhan

机构信息

Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.

The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

Clin Endocrinol (Oxf). 2025 Jan;102(1):79-90. doi: 10.1111/cen.15130. Epub 2024 Sep 16.

Abstract

OBJECTIVES

The objective of this study was to develop and validate a nomogram model integrating clinical, biochemical and ultrasound features to predict the malignancy rates of Thyroid Imaging Reporting and Data System 4 (TR4) thyroid nodules.

METHODS

A total of 1557 cases with confirmed pathological diagnoses via fine-needle aspiration (FNA) were retrospectively included. Univariate and multivariate logistic regression analyses were conducted to identify independent predictors of malignancy. These predictors were incorporated into the nomogram model, and its predictive performance was evaluated using receiver-operating characteristic curve (AUC), calibration plots, net reclassification improvement (NRI), integrated discrimination improvement (IDI) and decision curve analysis (DCA).

RESULTS

Eight out of 22 variables-age, margin, extrathyroidal extension, halo, calcification, suspicious lymph node metastasis, aspect ratio and thyroid peroxidase antibody-were identified as independent predictors of malignancy. The calibration curve demonstrated excellent performance, and DCA indicated favourable clinical utility. Additionally, our nomogram exhibited superior predictive ability compared to the current American College of Radiology (ACR) score model, as indicated by higher AUC, NRI, IDI, negative likelihood ratio (NLR) and positive likelihood ratio (PLR) values.

CONCLUSIONS

The developed nomogram model effectively predicts the malignancy rate of TR4 thyroid nodules, demonstrating promising clinical applicability.

摘要

目的

本研究的目的是开发并验证一种整合临床、生化和超声特征的列线图模型,以预测甲状腺影像报告和数据系统4(TR4)甲状腺结节的恶性率。

方法

回顾性纳入1557例经细针穿刺(FNA)确诊病理诊断的病例。进行单因素和多因素逻辑回归分析以确定恶性肿瘤的独立预测因素。将这些预测因素纳入列线图模型,并使用受试者操作特征曲线(AUC)、校准图、净重新分类改善(NRI)、综合判别改善(IDI)和决策曲线分析(DCA)评估其预测性能。

结果

22个变量中的8个——年龄、边界、甲状腺外扩展、晕圈、钙化、可疑淋巴结转移、纵横比和甲状腺过氧化物酶抗体——被确定为恶性肿瘤的独立预测因素。校准曲线显示出良好的性能,DCA表明具有良好的临床实用性。此外,我们的列线图显示出比当前美国放射学会(ACR)评分模型更好的预测能力,AUC、NRI、IDI、阴性似然比(NLR)和阳性似然比(PLR)值更高表明了这一点。

结论

所开发的列线图模型有效地预测了TR4甲状腺结节的恶性率,显示出有前景的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c3a/11612534/ae21718606b1/CEN-102-79-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验