Falabella Micol, Pizzamiglio Chiara, Tabara Luis Carlos, Munro Benjamin, Abdel-Hamid Mohamed S, Sonmezler Ece, Macken William L, Lu Shanti, Tilokani Lisa, Flannery Padraig J, Patel Nina, Pope Simon A S, Heales Simon J R, Hammadi Dania B H, Alston Charlotte L, Taylor Robert W, Lochmuller Hanns, Woodward Cathy E, Labrum Robyn, Vandrovcova Jana, Houlden Henry, Chronopoulou Efstathia, Pierre Germaine, Maroofian Reza, Hanna Michael G, Taanman Jan-Willem, Hiz Semra, Oktay Yavuz, Zaki Maha S, Horvath Rita, Prudent Julien, Pitceathly Robert D S
Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK.
NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK.
Brain. 2025 Feb 3;148(2):647-662. doi: 10.1093/brain/awae268.
Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid metabolism. Cardiolipin, the signature phospholipid of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesized and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to cardiolipin biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human cardiolipin-related PMDs are not fully characterized. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo cardiolipin biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterized the molecular defects associated with mutant PTPMT1 and confirmed the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterize the functional role of PTPMT1 in cardiolipin homeostasis, we created a ptpmt1 knockout zebrafish. This model had abnormalities in body size, developmental alterations, decreased total cardiolipin levels and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired cardiolipin metabolism, highlighting the contribution of aberrant cardiolipin metabolism towards human disease and emphasizing the importance of normal cardiolipin homeostasis during neurodevelopment.
原发性线粒体疾病(PMDs)是最常见的遗传性神经疾病之一。它们由线粒体或核DNA中的致病变异引起,这些变异会破坏线粒体结构和/或功能,导致氧化磷酸化(OXPHOS)受损。PMDs的一个新兴亚类涉及磷脂代谢缺陷。心磷脂是线粒体的标志性磷脂,主要存在于线粒体内膜中,在那里它通过多种酶进行生物合成和重塑,并且对线粒体生物学的多个方面至关重要。最近,参与心磷脂生物合成的基因与PMD相关联。然而,支撑人类心磷脂相关PMD的病理生理机制尚未完全明确。在此,我们报告了来自三个独立家庭的六名个体,他们在PTPMT1基因中携带双等位基因变异,PTPMT1是从头合成心磷脂所需的线粒体酪氨酸磷酸酶。所有患者均表现出一种复杂的新生儿/婴儿期起病的神经和神经发育综合征,包括发育迟缓、小头畸形、面部畸形、癫痫、痉挛、小脑共济失调和眼球震颤、感音神经性听力损失、视神经萎缩和延髓功能障碍。脑部磁共振成像(MRI)显示胼胝体变薄、小脑萎缩和白质改变的多种组合。利用患者来源的成纤维细胞和骨骼肌组织,结合细胞拯救实验,我们表征了与突变型PTPMT1相关的分子缺陷,并证实了PTPMT1缺失对线粒体结构和功能的下游致病作用。为了进一步表征PTPMT1在心磷脂稳态中的功能作用,我们创建了ptpmt1基因敲除斑马鱼。该模型出现了体型异常、发育改变、总心磷脂水平降低和OXPHOS缺陷。总之,这些数据表明PTPMT1功能缺失与一种由心磷脂代谢受损引起的新的常染色体隐性PMD相关,突出了异常心磷脂代谢对人类疾病的影响,并强调了神经发育过程中正常心磷脂稳态的重要性。