Tirey Teah N, Singh Anamika, Arango Juan C, Claridge Shelley A
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Chem Mater. 2024 Aug 23;36(17):8264-8273. doi: 10.1021/acs.chemmater.4c01106. eCollection 2024 Sep 10.
Nanometer-scale control over surface functionalization of soft gels is important for a variety of applications including controlling interactions with cells for cell culture and for regenerative medicine. Recently, we have shown that it is possible to transfer a nanometer-thick precision functional polymer layer to the surface of relatively stiff polyacrylamide gels. Here, we develop a fundamental understanding of the way in which the precision polymer backbone participates in the polyacrylamide radical polymerization and cross-linking process, which enables us to generate high-efficiency transfer to much softer hydrogels (down to 5 kPa) with stiffness similar to that of soft tissue. This approach creates hydrogel surfaces with exposed nanostructured functional arrays that open the door to controlled ligand presentation on soft hydrogel surfaces.
对软凝胶表面功能化进行纳米级控制对于包括控制细胞培养和再生医学中与细胞的相互作用在内的各种应用都很重要。最近,我们已经表明,可以将纳米厚的精密功能聚合物层转移到相对坚硬的聚丙烯酰胺凝胶表面。在这里,我们对精密聚合物主链参与聚丙烯酰胺自由基聚合和交联过程的方式有了基本的了解,这使我们能够高效地将其转移到更软的水凝胶(低至5 kPa)上,其硬度与软组织相似。这种方法创造了具有暴露的纳米结构功能阵列的水凝胶表面,为在软水凝胶表面进行可控配体展示打开了大门。