Qin Guangrong, Zhang Yue, Tyner Jeffrey W, Kemp Christopher J, Shmulevich Ilya
Institute for Systems Biology, Seattle, WA 98109, USA.
Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
iScience. 2024 Aug 20;27(9):110755. doi: 10.1016/j.isci.2024.110755. eCollection 2024 Sep 20.
Acute myeloid leukemia (AML) is a highly aggressive and heterogeneous disease, underscoring the need for improved therapeutic options and methods to optimally predict responses. With the wealth of available data resources, including clinical features, multiomics analysis, and drug screening from AML patients, development of drug response prediction models has become feasible. Knowledge graphs (KGs) embed the relationships between different entities or features, allowing for explanation of a wide breadth of drug sensitivity and resistance mechanisms. We designed AML drug response prediction models guided by KGs. Our models included engineered features, relative gene expression between marker genes for each drug and regulators (e.g., transcription factors). We identified relative gene expression of FGD4-MIR4519, NPC2-GATA2, and BCL2-NFKB2 as predictive features for venetoclax drug response. The KG-guided models provided high accuracy in independent test sets, overcame potential platform batch effects, and provided candidate drug sensitivity biomarkers for further validation.
急性髓系白血病(AML)是一种极具侵袭性且异质性强的疾病,这凸显了改进治疗方案以及优化反应预测方法的必要性。鉴于有丰富的可用数据资源,包括AML患者的临床特征、多组学分析和药物筛选,开发药物反应预测模型已变得可行。知识图谱(KGs)嵌入了不同实体或特征之间的关系,能够解释广泛的药物敏感性和耐药机制。我们设计了由知识图谱引导的AML药物反应预测模型。我们的模型包括工程特征、每种药物的标记基因与调节因子(如转录因子)之间的相对基因表达。我们确定FGD4-MIR4519、NPC2-GATA2和BCL2-NFKB2的相对基因表达为维奈托克药物反应的预测特征。由知识图谱引导的模型在独立测试集中提供了高精度,克服了潜在的平台批次效应,并为进一步验证提供了候选药物敏感性生物标志物。