Chauhan Inderjeet, Vijay Pothoppurathu M, Ranjan Ravi, Patra Kshirodra Kumar, Gopinath Chinnakonda S
Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
ACS Mater Au. 2024 Jun 4;4(5):500-511. doi: 10.1021/acsmaterialsau.4c00024. eCollection 2024 Sep 11.
In the landscape of green hydrogen production, alkaline water electrolysis is a well-established, yet not-so-cost-effective, technique due to the high overpotential requirement for the oxygen evolution reaction (OER). A low-voltage approach is proposed to overcome not only the OER challenge by favorably oxidizing abundant feedstock molecules with an earth-abundant catalyst but also to reduce the energy input required for hydrogen production. This alternative process not only generates carbon-negative green H but also yields concurrent value-added products (VAPs), thereby maximizing economic advantages and transforming waste into valuable resources. The essence of this study lies in a novel electrocatalyst material. In the present study, unique and two-dimensional (2D) ultrathin nanosheet phosphates featuring first-row transition metals are synthesized by a one-step solvothermal method, and evaluated for the electrocatalytic glycerol oxidation reaction (GLYOR) in an alkaline medium and simultaneous H production. Co(PO) (CoP), Cu(PO) (CuP), and Ni(PO) (NiP) exhibit 2D sheet morphologies, while FePO (FeP) displays an entirely different snowflake-like morphology. The 2D nanosheet morphology provides a large surface area and a high density of active sites. As a GLYOR catalyst, CoP ultrathin (∼5 nm) nanosheets exhibit remarkably low onset potential at 1.12 V (vs RHE), outperforming that of NiP, FeP, and CuP around 1.25 V (vs RHE). CoP displays 82% selective formate production, indicating a superior capacity for C-C cleavage and concurrent oxidation; this property could be utilized to valorize larger molecules. CoP also exhibits highly sustainable electrochemical stability for a continuous 200 h GLYOR operation, yielding 6.5 L of H production with a 4 cm electrode and 98 ± 0.5% Faradaic efficiency. The present study advances our understanding of efficient GLYOR catalysts and underscores the potential of sustainable and economically viable green hydrogen production methodologies.
在绿色氢生产领域,碱性水电解是一种成熟但成本效益不高的技术,因为析氧反应(OER)需要较高的过电位。人们提出了一种低电压方法,不仅要通过使用储量丰富的催化剂对丰富的原料分子进行有利氧化来克服OER挑战,还要减少制氢所需的能量输入。这种替代工艺不仅能产生负碳绿色氢气,还能同时生产增值产品(VAPs),从而实现经济优势最大化,并将废物转化为宝贵资源。本研究的核心在于一种新型电催化剂材料。在本研究中,通过一步溶剂热法合成了具有第一排过渡金属的独特二维(2D)超薄纳米片磷酸盐,并在碱性介质中对其电催化甘油氧化反应(GLYOR)及同时产氢性能进行了评估。Co(PO)(CoP)、Cu(PO)(CuP)和Ni(PO)(NiP)呈现二维片状形态,而FePO(FeP)则呈现完全不同的雪花状形态。二维纳米片形态提供了较大的表面积和高密度的活性位点。作为GLYOR催化剂,CoP超薄(约5纳米)纳米片在1.12 V(相对于可逆氢电极,RHE)时表现出极低的起始电位,优于NiP、FeP和CuP在1.25 V(相对于RHE)左右的表现。CoP显示出82%的选择性甲酸盐生成率,表明其具有优异的C-C裂解和同时氧化能力;这一特性可用于使更大的分子增值。CoP在连续200小时的GLYOR操作中还表现出高度可持续的电化学稳定性,使用4厘米电极产氢6.5升,法拉第效率为98±0.5%。本研究增进了我们对高效GLYOR催化剂的理解,并强调了可持续且经济可行的绿色氢生产方法的潜力。