Zheng Yunlin, Qiu Bingjiang, Liu Shunli, Song Ruirui, Yang Xianqi, Wu Lei, Chen Zhihong, Tuersun Abudouresuli, Yang Xiaotang, Wang Wei, Liu Zaiyi
Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.
EClinicalMedicine. 2024 Aug 30;75:102805. doi: 10.1016/j.eclinm.2024.102805. eCollection 2024 Sep.
Early prediction of lymph node status after neoadjuvant chemotherapy (NAC) facilitates promptly optimization of treatment strategies. This study aimed to develop and validate a deep learning network (DLN) using baseline computed tomography images to predict lymph node metastasis (LNM) after NAC in patients with locally advanced gastric cancer (LAGC).
A total of 1205 LAGC patients were retrospectively recruited from three hospitals between January 2013 and March 2023, constituting a training cohort, an internal validation cohort, and two external validation cohorts. A transformer-based DLN was developed using 3D tumor images to predict LNM after NAC. A clinical model was constructed through multivariate logistic regression analysis as a baseline for subsequent comparisons. The performance of the models was evaluated through discrimination, calibration, and clinical applicability. Furthermore, Kaplan-Meier survival analysis was conducted to assess overall survival (OS) of LAGC patients at two follow-up centers.
The DLN outperformed the clinical model and demonstrated a robust performance for predicting LNM in the training and validation cohorts, with areas under the curve (AUCs) of 0.804 (95% confidence interval [CI], 0.752-0.849), 0.748 (95% CI, 0.660-0.830), 0.788 (95% CI, 0.735-0.835), and 0.766 (95% CI, 0.717-0.814), respectively. Decision curve analysis exhibited a high net clinical benefit of the DLN. Moreover, the DLN was significantly associated with the OS of LAGC patients [Center 1: hazard ratio (HR), 1.789, P < 0.001; Center 2:HR, 1.776, P = 0.013].
The transformer-based DLN provides early and effective prediction of LNM and survival outcomes in LAGC patients receiving NAC, with promise to guide individualized therapy. Future prospective multicenter studies are warranted to further validate our model.
National Natural Science Foundation of China (NO. 82373432, 82171923, 82202142), Project Funded by China Postdoctoral Science Foundation (NO. 2022M720857), Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (NO. U22A20345), National Science Fund for Distinguished Young Scholars of China (NO. 81925023), Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (NO. 2022B1212010011), High-level Hospital Construction Project (NO. DFJHBF202105), Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (NO. 2024B1515020091).
新辅助化疗(NAC)后淋巴结状态的早期预测有助于及时优化治疗策略。本研究旨在开发并验证一种深度学习网络(DLN),利用基线计算机断层扫描图像预测局部晚期胃癌(LAGC)患者NAC后的淋巴结转移(LNM)。
2013年1月至2023年3月期间,从三家医院回顾性招募了1205例LAGC患者,组成一个训练队列、一个内部验证队列和两个外部验证队列。使用3D肿瘤图像开发了基于Transformer的DLN,以预测NAC后的LNM。通过多变量逻辑回归分析构建临床模型,作为后续比较的基线。通过区分度、校准度和临床适用性评估模型的性能。此外,进行了Kaplan-Meier生存分析,以评估两个随访中心LAGC患者的总生存期(OS)。
DLN的表现优于临床模型,在训练和验证队列中对LNM的预测表现稳健,曲线下面积(AUC)分别为0.804(95%置信区间[CI],0.752-0.849)、0.748(95%CI,0.660-0.830)、0.788(95%CI,0.735-0.835)和0.766(95%CI,0.717-0.814)。决策曲线分析显示DLN具有较高的净临床效益。此外,DLN与LAGC患者的OS显著相关[中心1:风险比(HR),1.789,P<0.001;中心2:HR,1.776,P=0.013]。
基于Transformer的DLN为接受NAC的LAGC患者的LNM和生存结果提供了早期有效的预测,有望指导个体化治疗。未来有必要进行前瞻性多中心研究以进一步验证我们的模型。
中国国家自然科学基金(项目编号:82373432、82171923、82202142)、中国博士后科学基金资助项目(项目编号:2022M720857)、中国国家自然科学基金区域创新发展联合基金(项目编号:U22A20345)、中国国家杰出青年科学基金(项目编号:81925023)、广东省医学图像分析与应用人工智能重点实验室(项目编号:2022B1212010011)、高水平医院建设项目(项目编号:DFJHBF202105)、广东省杰出青年科学基金(项目编号:2024B1515020091)。