文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于栖息地的放射组学与变压器融合模型评估空洞型耐多药结核病患者的治疗效果

Habitat radiomics and transformer fusion model to evaluate treatment effectiveness of cavitary MDR-TB patients.

作者信息

Lv Xinna, Wang Yichuan, Ding Chenyu, Qin Lixin, Xu Xiaoyue, Li Ye, Hou Dailun

机构信息

Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China.

Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.

出版信息

iScience. 2025 May 23;28(6):112743. doi: 10.1016/j.isci.2025.112743. eCollection 2025 Jun 20.


DOI:10.1016/j.isci.2025.112743
PMID:40546963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12178788/
Abstract

Promptly identification of multidrug-resistant tuberculosis (MDR-TB) patients at high risk of treatment failure is essential for improving cure rates. This study aimed to develop a habitat radiomics based transformer fusion model to assess treatment effectiveness of MDR-TB. Independent patient cohorts from two hospitals were included. Radiomics features were extracted from the habitat and peripheral regions of cavities to construct predictive models. Then, a transformer-based fusion model integrating features from all regions was established. The areas under the receiver operating characteristic curves (AUCs) were used to evaluate the performance. The transformer fusion model combining two subregions and peripheral area achieved remarkable performance, with AUC values of 1.000, 0.959, and 0.879 in the training, validation, and test cohort, respectively. The finding highlights the efficacy of our model in predicting treatment effectiveness of MDR-TB patients and its potential to guide individualized therapy.

摘要

及时识别有治疗失败高风险的耐多药结核病(MDR-TB)患者对于提高治愈率至关重要。本研究旨在开发一种基于肺部影像组学的变压器融合模型,以评估MDR-TB的治疗效果。纳入了来自两家医院的独立患者队列。从空洞的肺部影像组学特征和周边区域提取特征以构建预测模型。然后,建立了一个整合所有区域特征的基于变压器的融合模型。采用受试者工作特征曲线下面积(AUC)来评估性能。结合两个子区域和周边区域的变压器融合模型表现出色,在训练、验证和测试队列中的AUC值分别为1.000、0.959和0.879。这一发现突出了我们的模型在预测MDR-TB患者治疗效果方面的有效性及其指导个体化治疗的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/27c71ec494e9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/4a6672f9ed90/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/b65c0b63e519/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/32894bdf6e79/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/27c71ec494e9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/4a6672f9ed90/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/b65c0b63e519/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/32894bdf6e79/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c24/12178788/27c71ec494e9/gr3.jpg

相似文献

[1]
Habitat radiomics and transformer fusion model to evaluate treatment effectiveness of cavitary MDR-TB patients.

iScience. 2025-5-23

[2]
Development of a Radiomic-clinical Nomogram for Prediction of Survival in Patients with Nasal Extranodal Natural Killer/T-cell Lymphoma.

Curr Med Imaging. 2025-6-19

[3]
Dual-energy CT Radiomics Combined with Quantitative Parameters for Differentiating Lung Adenocarcinoma From Squamous Cell Carcinoma: A Dual-center Study.

Acad Radiol. 2025-3

[4]
Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views.

Cochrane Database Syst Rev. 2022-4-26

[5]
Combination of ultrasound-based radiomics and deep learning with clinical data to predict response in breast cancer patients treated with neoadjuvant chemotherapy.

Front Oncol. 2025-6-5

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Multidrug resistant tuberculosis in Ethiopian settings and its association with previous history of anti-tuberculosis treatment: a systematic review and meta-analysis.

BMC Infect Dis. 2017-3-20

[8]
Habitat-Based Radiomics for Revealing Tumor Heterogeneity and Predicting Residual Cancer Burden Classification in Breast Cancer.

Clin Breast Cancer. 2025-7

[9]
Longitudinal computed tomography-based delta-radiomics of visceral adipose tissue predicts infliximab secondary loss of response in Crohn's disease patients.

World J Gastroenterol. 2025-6-7

[10]
Treatment outcomes for multidrug-resistant tuberculosis under DOTS-Plus: a systematic review and meta-analysis of published studies.

Infect Dis Poverty. 2017-1-17

本文引用的文献

[1]
Cavitary lung lesions and quality of life after TB.

Int J Tuberc Lung Dis. 2024-10-1

[2]
A transformer-based deep learning model for early prediction of lymph node metastasis in locally advanced gastric cancer after neoadjuvant chemotherapy using pretreatment CT images.

EClinicalMedicine. 2024-8-30

[3]
Habitat Imaging With Tumoral and Peritumoral Radiomics for Prediction of Lung Adenocarcinoma Invasiveness on Preoperative Chest CT: A Multicenter Study.

AJR Am J Roentgenol. 2024-10

[4]
FSH-DETR: An Efficient End-to-End Fire Smoke and Human Detection Based on a Deformable DEtection TRansformer (DETR).

Sensors (Basel). 2024-6-23

[5]
Integrating lipid metabolite analysis with MRI-based transformer and radiomics for early and late stage prediction of oral squamous cell carcinoma.

BMC Cancer. 2024-7-3

[6]
Radiomics and Deep Learning to Predict Pulmonary Nodule Metastasis at CT.

Radiology. 2024-4

[7]
Multiparametric MRI subregion radiomics for preoperative assessment of high-risk subregions in microsatellite instability of rectal cancer patients: a multicenter study.

Int J Surg. 2024-7-1

[8]
Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT.

BMC Med Imaging. 2024-3-14

[9]
Utility of Machine Learning and Radiomics Based on Cavity for Predicting the Therapeutic Response of MDR-TB.

Infect Drug Resist. 2023-10-28

[10]
MRI-based Multiregional Radiomics for Pretreatment Prediction of Distant Metastasis After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer.

Acad Radiol. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索