Kapral Lorenz, Dibiasi Christoph, Jeremic Natasa, Bartos Stefan, Behrens Sybille, Bilir Aylin, Heitzinger Clemens, Kimberger Oliver
Medical University of Vienna, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Währinger Gürtel 18-20, Vienna 1090, Austria.
Ludwig Boltzmann Institute Digital Health and Patient Safety, Währinger Straße. 104/10, Vienna, 1180 Wien, Austria.
EClinicalMedicine. 2024 Aug 30;75:102797. doi: 10.1016/j.eclinm.2024.102797. eCollection 2024 Sep.
During surgery, intraoperative hypotension is associated with postoperative morbidity and should therefore be avoided. Predicting the occurrence of hypotension in advance may allow timely interventions to prevent hypotension. Previous prediction models mostly use high-resolution waveform data, which is often not available.
We utilised a novel temporal fusion transformer (TFT) algorithm to predict intraoperative blood pressure trajectories 7 min in advance. We trained the model with low-resolution data (sampled every 15 s) from 73,009 patients who were undergoing general anaesthesia for non-cardiothoracic surgery between January 1, 2017, and December 30, 2020, at the General Hospital of Vienna, Austria. The data set contained information on patient demographics, vital signs, medication, and ventilation. The model was evaluated using an internal (n = 8113) and external test set (n = 5065) obtained from the openly accessible Vital Signs Database.
In the internal test set, the mean absolute error for predicting mean arterial blood pressure was 0.376 standard deviations-or 4 mmHg-and 0.622 standard deviations-or 7 mmHg-in the external test set. We also adapted the TFT model to binarily predict the occurrence of hypotension as defined by mean arterial blood pressure < 65 mmHg in the next one, three, five, and 7 min. Here, model discrimination was excellent, with a mean area under the receiver operating characteristic curve (AUROC) of 0.933 in the internal test set and 0.919 in the external test set.
Our TFT model is capable of accurately forecasting intraoperative arterial blood pressure using only low-resolution data showing a low prediction error. When used for binary prediction of hypotension, we obtained excellent performance.
No external funding.
手术期间,术中低血压与术后发病率相关,因此应避免。提前预测低血压的发生可能有助于及时干预以预防低血压。以往的预测模型大多使用高分辨率波形数据,而这些数据往往难以获取。
我们利用一种新型的时间融合变压器(TFT)算法提前7分钟预测术中血压轨迹。我们使用来自2017年1月1日至2020年12月30日在奥地利维也纳总医院接受非心胸外科手术全身麻醉的73009例患者的低分辨率数据(每15秒采样一次)对模型进行训练。数据集包含患者人口统计学、生命体征、用药和通气信息。该模型使用从公开可用的生命体征数据库获得的内部测试集(n = 8113)和外部测试集(n = 5065)进行评估。
在内部测试集中,预测平均动脉血压的平均绝对误差为0.376个标准差(即4 mmHg),在外部测试集中为0.622个标准差(即7 mmHg)。我们还调整了TFT模型,以二元方式预测接下来1、3、5和7分钟内平均动脉血压<65 mmHg所定义的低血压的发生情况。在此,模型判别效果极佳,内部测试集的受试者工作特征曲线下平均面积(AUROC)为0.933,外部测试集为0.919。
我们的TFT模型仅使用低分辨率数据就能准确预测术中动脉血压,预测误差较低。用于低血压的二元预测时,我们获得了出色的性能。
无外部资金。