Suppr超能文献

基于计算机断层扫描特征和增强定量分析预测肺磨玻璃结节侵袭性及浸润程度的价值

The value of predicting the invasiveness and degree of infiltration of pulmonary ground-glass nodules based on computed tomography features and enhanced quantitative analysis.

作者信息

Xie Bingkun, Wang Rong, Fu Kunyue, Wang Qian, Liu Zhenhe, Peng Wenting

机构信息

Department of Radiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China.

出版信息

Quant Imaging Med Surg. 2024 Sep 1;14(9):6767-6779. doi: 10.21037/qims-23-1708. Epub 2024 Aug 23.

Abstract

BACKGROUND

The incidence and mortality rate of lung cancer are the highest in the world among all malignant tumors. Accurate assessment of ground-glass nodules (GGNs) is crucial in reducing lung cancer mortality. This study aimed to explore the value of computed tomography (CT) features and quantitative parameters in predicting the invasiveness and degree of infiltration of GGNs.

METHODS

Lesions were classified into three groups based on pathological types: the precursor glandular lesion (PGL) group, including atypical adenomatoid hyperplasia and adenocarcinoma ; the minimally invasive adenocarcinoma group; and the invasive adenocarcinoma group. Quantitative and qualitative data of the nodules were compared, and receiver operating characteristic (ROC) curve analysis was performed for each quantitative parameter. Binary logistic regression analysis was used to evaluate independent predictors of GGN invasiveness.

RESULTS

There were significant differences in lesion size, morphology, nodule type, bronchial abnormality, internal vascular sign and pleural retraction among the three groups (P<0.05). There were significant differences in all CT quantitative parameters (CT attenuation value in the plain phase, CT attenuation value in the arterial phase, CT attenuation value in the venous phase, arterial phase enhancement difference, venous phase enhancement difference, arterial phase enhancement index and venous phase enhancement index) among the three groups (P<0.001). The ROC curve analysis showed that the CT attenuation value in the plain phase, CT attenuation value in each enhanced phase, enhancement difference and enhancement index had good discriminatory power. Binary logistic regression analysis revealed that nodule type and internal vascular sign were independent risk factors for GGN invasiveness.

CONCLUSIONS

CT features combined with enhanced scanning and quantitative analysis have important value in predicting the invasiveness of GGNs. The type of pulmonary nodule detected on CT (pure GGN or mixed GGN) and the presence of internal vascular signs are independent risk factors for GGN invasiveness.

摘要

背景

在所有恶性肿瘤中,肺癌的发病率和死亡率位居世界之首。准确评估磨玻璃结节(GGN)对于降低肺癌死亡率至关重要。本研究旨在探讨计算机断层扫描(CT)特征和定量参数在预测GGN浸润性和浸润程度方面的价值。

方法

根据病理类型将病变分为三组:前驱腺性病变(PGL)组,包括非典型腺瘤样增生和腺癌;微浸润腺癌组;浸润性腺癌组。比较结节的定量和定性数据,并对每个定量参数进行受试者操作特征(ROC)曲线分析。采用二元逻辑回归分析评估GGN浸润性的独立预测因素。

结果

三组在病变大小、形态、结节类型、支气管异常、内部血管征和胸膜凹陷方面存在显著差异(P<0.05)。三组在所有CT定量参数(平扫期CT衰减值、动脉期CT衰减值、静脉期CT衰减值、动脉期强化差值、静脉期强化差值、动脉期强化指数和静脉期强化指数)上均存在显著差异(P<0.001)。ROC曲线分析显示,平扫期CT衰减值、各强化期CT衰减值、强化差值和强化指数具有良好的鉴别能力。二元逻辑回归分析显示,结节类型和内部血管征是GGN浸润性的独立危险因素。

结论

CT特征结合增强扫描和定量分析在预测GGN浸润性方面具有重要价值。CT上检测到的肺结节类型(纯GGN或混合GGN)和内部血管征的存在是GGN浸润性的独立危险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验