Suppr超能文献

光谱双层计算机断层扫描可预测磨玻璃结节的侵袭性:联合胸苷激酶-1的诊断模型

Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1.

作者信息

Wang Tong, Yue Yong, Fan Zheng, Jia Zheng, Yu Xiuze, Liu Chen, Hou Yang

机构信息

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.

Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China.

出版信息

J Clin Med. 2023 Jan 31;12(3):1107. doi: 10.3390/jcm12031107.

Abstract

OBJECTIVES

Few studies have explored the use of spectral dual-layer detector-based computed tomography (SDCT) parameters, thymidine kinase-1 (TK1), and tumor abnormal protein (TAP) for the detection of ground-glass nodules (GGNs). Therefore, we aimed to evaluate the quantitative and qualitative parameters generated from SDCT for predicting the pathological subtypes of GGN-featured lung adenocarcinoma combined with TK1 and TAP.

MATERIAL AND METHODS

Between July 2021 and September 2022, 238 patients with GGNs were retrospectively enrolled in this study. SDCT and tests for TK1 and TAP were performed preoperatively, and the lesions were divided into glandular precursor lesions (PGL), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC), according to the pathological results. A receiver operating characteristic (ROC) curve was used to compare the diagnostic performance of these parameters. Multivariate logistic regression analysis was performed to construct a joint diagnostic model and create a nomogram.

RESULTS

This study included 238 GGNs, including 41 atypical adenomatous hyperplasias (AAH), 62 adenocarcinomas in situ (AIS), 49 MIA, and 86 IAC, with a high proportion of women, non-smokers, and pure ground-glass nodule (pGGN). CT100 keV (a/v), electronic density (EDW) (a/v), Daverage, Dsolid, TK1, and TAP of MIA and IAC were higher than those of PGL. The effective atomic number (Zeff (a/v)) was lower in MIA and IAC than in PGL (all < 0.05). Logistic regression analysis showed that Zeff (a), EDW (a), TK1, Daverage, and internal bronchial morphology were crucial factors in predicting the aggressiveness of GGN. Zeff (a) had the highest diagnostic performance with an area under the ROC curve (AUC) = 0.896, followed by EDW (a) (AUC = 0.838) and CT100 keVa (AUC = 0.819). The diagnostic model and nomogram constructed using these five parameters (Zeff (a) + EDW (a) + CT100 keVa + Daverage + TK1) had an AUC = 0.933, which was higher than the individual parameters ( < 0.05).

CONCLUSIONS

Multiple quantitative and functional parameters can be selected based on SDCT, especially Zeff (a) and EDW (a), which have high sensitivity and specificity for predicting GGNs' invasiveness. Additionally, the combination of TK1 can further improve diagnostic performance, and using a nomogram is helpful for individualized predictions.

摘要

目的

很少有研究探讨基于光谱双层探测器的计算机断层扫描(SDCT)参数、胸苷激酶-1(TK1)和肿瘤异常蛋白(TAP)在检测磨玻璃结节(GGN)中的应用。因此,我们旨在评估由SDCT生成的定量和定性参数,以联合TK1和TAP预测具有GGN特征的肺腺癌的病理亚型。

材料与方法

2021年7月至2022年9月,本研究回顾性纳入了238例GGN患者。术前进行了SDCT以及TK1和TAP检测,并根据病理结果将病变分为腺性前驱病变(PGL)、微浸润腺癌(MIA)和浸润性腺癌(IAC)。采用受试者操作特征(ROC)曲线比较这些参数的诊断性能。进行多因素逻辑回归分析以构建联合诊断模型并创建列线图。

结果

本研究纳入了238个GGN,包括41例非典型腺瘤样增生(AAH)、62例原位腺癌(AIS)、49例MIA和86例IAC,女性、非吸烟者和纯磨玻璃结节(pGGN)比例较高。MIA和IAC的CT100 keV(a/v)、电子密度(EDW)(a/v)、平均直径(Daverage)、实性直径(Dsolid)、TK1和TAP高于PGL。MIA和IAC的有效原子序数(Zeff(a/v))低于PGL(均P<0.05)。逻辑回归分析显示,Zeff(a)、EDW(a)、TK1、Daverage和内部支气管形态是预测GGN侵袭性的关键因素。Zeff(a)的诊断性能最高,ROC曲线下面积(AUC)=0.896,其次是EDW(a)(AUC = 0.838)和CT100 keVa(AUC = 0.819)。使用这五个参数(Zeff(a)+EDW(a)+CT100 keVa+Daverage+TK1)构建的诊断模型和列线图的AUC = 0.933,高于单个参数(P<0.05)。

结论

基于SDCT可以选择多个定量和功能参数,尤其是Zeff(a)和EDW(a),它们对预测GGN的侵袭性具有高敏感性和特异性。此外,TK1的联合使用可进一步提高诊断性能,使用列线图有助于个体化预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a80/9917490/cfdfa39992d2/jcm-12-01107-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验