Suppr超能文献

ArSa-Tweets:一种基于深度学习模型的新型阿拉伯语讽刺检测系统。

ArSa-Tweets: A novel Arabic sarcasm detection system based on deep learning model.

作者信息

Abuein Qusai, Al-Khatib Ra'ed M, Migdady Aya, Jawarneh Mahmoud S, Al-Khateeb Asef

机构信息

Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, 22110, Jordan.

Department of Computer Sciences, Yarmouk University, Irbid, 21163, Jordan.

出版信息

Heliyon. 2024 Aug 28;10(17):e36892. doi: 10.1016/j.heliyon.2024.e36892. eCollection 2024 Sep 15.

Abstract

Sarcasm in Sentiment Analysis (SA) is important due to the sense of sarcasm in sentences that differs from their literal meaning. Analysis of Arabic sarcasm still has many challenges like implicit indirect idioms to express the opinion, and lack of Arabic sarcasm corpus. In this paper, we proposed a new detecting model for sarcasm in Arabic tweets called the ArSa-Tweet model. It is based on implementing and developing Deep Learning (DL) models to classify tweets as sarcastic or not. The development of our proposed model consists of adding main improvements by applying robust preprocessing steps before feeding the data to the adapted DL models. The adapted DL models are LSTM, Multi-headed CNN-LSTM-GRU, BERT, AraBert-V01, and AraBert-V02. In addition, we proposed ArSa-data as a golden corpus that consists of Arabic tweets. A comparative process shows that our proposed ArSa-Tweet method has the most impact accuracy rate based on deploying the AraBert-V02 model, which obtains the best performance results in all accuracy metrics when compared with other methods.

摘要

情感分析中的讽刺(SA)很重要,因为句子中的讽刺意味与其字面意思不同。阿拉伯语讽刺分析仍面临许多挑战,比如表达观点的隐含间接习语,以及缺乏阿拉伯语讽刺语料库。在本文中,我们提出了一种用于检测阿拉伯语推文讽刺意味的新模型,称为ArSa-Tweet模型。它基于实现和开发深度学习(DL)模型,以将推文分类为讽刺或非讽刺。我们提出的模型的开发包括在将数据输入适配的DL模型之前应用强大的预处理步骤,从而进行主要改进。适配的DL模型有长短期记忆网络(LSTM)、多头卷积神经网络 - 长短期记忆网络 - 门控循环单元(Multi-headed CNN-LSTM-GRU)、双向编码器表征来自变压器(BERT)、阿拉伯语BERT-V01和阿拉伯语BERT-V02。此外,我们提出了ArSa-data作为一个由阿拉伯语推文组成的黄金语料库。一个对比过程表明,基于部署阿拉伯语BERT-V02模型,我们提出的ArSa-Tweet方法具有最高的影响准确率,与其他方法相比,该模型在所有准确率指标上都获得了最佳性能结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验