Danyali Saeed, Babaeifard Mohammad, Shirkhani Mohammadamin, Azizi Amirreza, Tavoosi Jafar, Dadvand Zohreh
Department of Electrical Engineering, Ilam University, Ilam, Iran.
Department of Electrical Enigeering, Shahed University, Tehran, Iran.
Heliyon. 2024 Aug 23;10(17):e36747. doi: 10.1016/j.heliyon.2024.e36747. eCollection 2024 Sep 15.
Today, renewable energy systems like photovoltaic system are widely used in various applications. Among the different types of microgrids, hybrid microgrids are the most used type, therefore, inverters should be used to exchange power between DC and AC sides. According to the existing economic issues, extracting the maximum possible power from these systems are an important issue. This paper presents a new neuro-fuzzy controller for achieving maximum power point tracking (MPPT) in a grid-connected PV system under partially shaded conditions. This controller uses the Gravity Search Algorithm (GSA) to track the global maximum power point (GMPP) of the presented grid-connected PV system. The method controls the grid-connected inverter at the desired voltage to achieve maximum power after receiving its required specifications from the system. The Matlab/Simulink software is used to evaluate the performance of the proposed method. The results show that the proposed method can track the maximum power point under uniform and partial shading conditions with high speed and accuracy. Specifically, the proposed algorithm improves the tracking speed and increases the power output compared to traditional methods. The neuro-fuzzy controller's adaptive capabilities allow it to respond efficiently to dynamic changes in shading, ensuring stable and optimal power output. These advantages make the proposed method a significant improvement over existing MPPT techniques.
如今,像光伏系统这样的可再生能源系统在各种应用中被广泛使用。在不同类型的微电网中,混合微电网是使用最多的类型,因此,应使用逆变器在直流侧和交流侧之间进行功率交换。根据现有的经济问题,从这些系统中提取尽可能多的功率是一个重要问题。本文提出了一种新型神经模糊控制器,用于在部分阴影条件下的并网光伏系统中实现最大功率点跟踪(MPPT)。该控制器使用引力搜索算法(GSA)来跟踪所提出的并网光伏系统的全局最大功率点(GMPP)。该方法在从系统接收到所需规格后,将并网逆变器控制在所需电压以实现最大功率。使用Matlab/Simulink软件来评估所提方法的性能。结果表明,所提方法能够在均匀和部分阴影条件下高速、准确地跟踪最大功率点。具体而言,与传统方法相比,所提算法提高了跟踪速度并增加了功率输出。神经模糊控制器的自适应能力使其能够有效应对阴影的动态变化,确保稳定和最佳的功率输出。这些优点使所提方法成为对现有MPPT技术的重大改进。