Suppr超能文献

webtWAS:基于转录组关联研究的疾病候选易感性基因资源。

webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study.

机构信息

Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Nucleic Acids Res. 2022 Jan 7;50(D1):D1123-D1130. doi: 10.1093/nar/gkab957.

Abstract

The development of transcriptome-wide association studies (TWAS) has enabled researchers to better identify and interpret causal genes in many diseases. However, there are currently no resources providing a comprehensive listing of gene-disease associations discovered by TWAS from published GWAS summary statistics. TWAS analyses are also difficult to conduct due to the complexity of TWAS software pipelines. To address these issues, we introduce a new resource called webTWAS, which integrates a database of the most comprehensive disease GWAS datasets currently available with credible sets of potential causal genes identified by multiple TWAS software packages. Specifically, a total of 235 064 gene-diseases associations for a wide range of human diseases are prioritized from 1298 high-quality downloadable European GWAS summary statistics. Associations are calculated with seven different statistical models based on three popular and representative TWAS software packages. Users can explore associations at the gene or disease level, and easily search for related studies or diseases using the MeSH disease tree. Since the effects of diseases are highly tissue-specific, webTWAS applies tissue-specific enrichment analysis to identify significant tissues. A user-friendly web server is also available to run custom TWAS analyses on user-provided GWAS summary statistics data. webTWAS is freely available at http://www.webtwas.net.

摘要

转录组关联研究(TWAS)的发展使研究人员能够更好地识别和解释许多疾病中的因果基因。然而,目前尚无资源提供 TWAS 从已发表的 GWAS 汇总统计数据中发现的基因-疾病关联的综合清单。由于 TWAS 软件管道的复杂性,TWAS 分析也很难进行。为了解决这些问题,我们引入了一个名为 webTWAS 的新资源,它将目前可用的最全面的疾病 GWAS 数据集数据库与多个 TWAS 软件包确定的可信潜在因果基因置信集集成在一起。具体来说,从 1298 个高质量可下载的欧洲 GWAS 汇总统计数据中,为广泛的人类疾病优先确定了总共 235064 个基因-疾病关联。使用基于三种流行且具有代表性的 TWAS 软件包的七个不同统计模型计算关联。用户可以在基因或疾病水平上进行关联探索,并使用 MeSH 疾病树轻松搜索相关研究或疾病。由于疾病的影响具有高度的组织特异性,因此 webTWAS 应用组织特异性富集分析来识别重要的组织。还提供了一个用户友好的网络服务器,可根据用户提供的 GWAS 汇总统计数据运行自定义 TWAS 分析。webTWAS 可免费在 http://www.webtwas.net 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fb/8728162/405dbecb17de/gkab957fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验