Suppr超能文献

结合不良事件本体论对新冠疫苗安全性进行贝叶斯学习

BAYESIAN LEARNING OF COVID-19 VACCINE SAFETY WHILE INCORPORATING ADVERSE EVENTS ONTOLOGY.

作者信息

Zhao Bangyao, Zhong Yuan, Kang Jian, Zhao Lili

机构信息

Department of Biostatistics, University of Michigan.

出版信息

Ann Appl Stat. 2023 Dec;17(4):2887-2902. doi: 10.1214/23-aoas1743. Epub 2023 Oct 30.

Abstract

While vaccines are crucial to end the COVID-19 pandemic, public confidence in vaccine safety has always been vulnerable. Many statistical methods have been applied to VAERS (Vaccine Adverse Event Reporting System) database to study the safety of COVID-19 vaccines. However, none of these methods considered the adverse event (AE) ontology. AEs are naturally related; for example, events of retching, dysphagia, and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships into the model can aid in the detection of true AE signals amid the noise while reducing false positives. We propose a Bayesian graph-assisted signal selection (BGrass) model to simultaneously estimate all AEs while incorporating the network of dependence between AEs. Under a fully Bayesian inference framework, we also propose a negative control approach to mitigate the reporting bias and an enrichment approach to detecting AE groups of concern. For posterior computation we construct an equivalent model representation and develop an efficient Gibbs sampler. We evaluate the performance of BGrass via extensive simulations. To study the safety of COVID-19 vaccines, we apply BGrass to analyze approximately one million VAERS reports (01/01/2016-12/24/2021) involving more than 800 AEs. In particular, we found that blood clots (including deep vein thrombosis, thrombosis, and pulmonary embolism) are more likely to be reported after COVID-19 vaccination, compared to influenza vaccines. They are also reported more often for Johnson & Johnson-Janssen vaccine, compared to mRNA-based COVID-19 vaccines. A user-friendly R package BGrass that implements the proposed methods to assess vaccine safety is included in the Supplementary Material and is publicly available at https://github.com/BangyaoZhao/BGrass.

摘要

虽然疫苗对于终结新冠疫情至关重要,但公众对疫苗安全性的信心一直较为脆弱。许多统计方法已应用于疫苗不良事件报告系统(VAERS)数据库,以研究新冠疫苗的安全性。然而,这些方法均未考虑不良事件(AE)本体。不良事件之间存在天然关联;例如,干呕、吞咽困难和反流事件均与消化系统异常有关。明确将不良事件关系纳入模型有助于在噪声中检测真正的不良事件信号,同时减少假阳性。我们提出一种贝叶斯图辅助信号选择(BGrass)模型,在纳入不良事件之间的依赖网络的同时,对所有不良事件进行联合估计。在全贝叶斯推断框架下,我们还提出一种负对照方法来减轻报告偏差,以及一种富集方法来检测关注的不良事件组。对于后验计算,我们构建了一个等效的模型表示,并开发了一种高效的吉布斯采样器。我们通过广泛的模拟评估了BGrass的性能。为研究新冠疫苗的安全性,我们应用BGrass分析了约100万份VAERS报告(2016年1月1日至2021年12月24日),涉及800多种不良事件。特别是,我们发现与流感疫苗相比,接种新冠疫苗后更有可能报告血栓(包括深静脉血栓形成、血栓形成和肺栓塞)。与基于mRNA的新冠疫苗相比,强生-杨森疫苗报告血栓的情况也更频繁。补充材料中包含一个用户友好型的R包BGrass,它实现了所提出的评估疫苗安全性的方法,可在https://github.com/BangyaoZhao/BGrass上公开获取。

相似文献

4
Vaccine adverse event enrichment tests.疫苗不良事件富集检验。
Stat Med. 2021 Aug 30;40(19):4269-4278. doi: 10.1002/sim.9027. Epub 2021 May 9.
5
Determinants of COVID-19 vaccine-induced myocarditis.新冠病毒疫苗诱导的心肌炎的决定因素。
Ther Adv Drug Saf. 2024 Jan 27;15:20420986241226566. doi: 10.1177/20420986241226566. eCollection 2024.

本文引用的文献

3
COVID-19 vaccine-induced cellulitis and myositis.新型冠状病毒肺炎疫苗诱导的蜂窝织炎和肌炎
Cleve Clin J Med. 2021 Dec 2;88(12):648-650. doi: 10.3949/ccjm.88a.21038.
7
Myocarditis With COVID-19 mRNA Vaccines.COVID-19 mRNA 疫苗相关心肌炎。
Circulation. 2021 Aug 10;144(6):471-484. doi: 10.1161/CIRCULATIONAHA.121.056135. Epub 2021 Jul 20.
8
Delayed Skin Rash After Receiving SARS-CoV-2 mRNA Moderna Vaccine.接种新型冠状病毒2 mRNA 莫德纳疫苗后出现延迟性皮疹。
Infect Dis Clin Pract (Baltim Md). 2021 Jul;29(4):e262-e263. doi: 10.1097/IPC.0000000000001037. Epub 2021 May 15.
9
A Selective Review of Negative Control Methods in Epidemiology.流行病学中阴性对照方法的选择性综述
Curr Epidemiol Rep. 2020 Dec;7(4):190-202. doi: 10.1007/s40471-020-00243-4. Epub 2020 Oct 15.
10
Vaccine adverse event enrichment tests.疫苗不良事件富集检验。
Stat Med. 2021 Aug 30;40(19):4269-4278. doi: 10.1002/sim.9027. Epub 2021 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验