Suppr超能文献

用于构建功能性神经类器官的血管网络启发式可扩散支架

Vascular network-inspired diffusible scaffolds for engineering functional neural organoids.

作者信息

Cai Hongwei, Tian Chunhui, Chen Lei, McCracken Kyle, Tchieu Jason, Gu Mingxia, Mackie Ken, Guo Feng

出版信息

bioRxiv. 2024 Sep 2:2024.08.31.610649. doi: 10.1101/2024.08.31.610649.

Abstract

Organoids, three-dimensional in vitro organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present Vascular network-Inspired Diffusible (VID) scaffolds to fully recapture the benefits of physiological diffusion physics for generating functional organoids and phenotyping their drug response. In a proof-of-concept application, the VID scaffolds, 3D-printed meshed tubular channel networks, support the successful generation of engineered human midbrain organoids almost without necrosis and hypoxia in commonly used well-plates. Compared to conventional organoids, these engineered organoids develop with more physiologically relevant features and functions including midbrain-specific identity, oxygen metabolism, neuronal maturation, and network activity. Moreover, these engineered organoids also better recapitulate pharmacological responses, such as neural activity changes to fentanyl exposure, compared to conventional organoids with significant diffusion limits. Combining these unique scaffolds and engineered organoids may provide insights for organoid development and therapeutic innovation.

摘要

类器官是源自干细胞的三维体外类器官组织培养物,在发育生物学、药物发现和再生医学方面显示出巨大潜力。然而,当前类器官的功能和表型,尤其是神经类器官,仍然受到氧气、营养物质、代谢产物、信号分子和药物扩散不足的限制。在此,我们展示了血管网络启发的可扩散(VID)支架,以充分重现生理扩散物理学的优势,用于生成功能性类器官并对其药物反应进行表型分析。在一个概念验证应用中,VID支架(3D打印的网状管状通道网络)支持在常用培养皿中成功生成工程化人类中脑类器官,几乎没有坏死和缺氧情况。与传统类器官相比,这些工程化类器官具有更多生理相关的特征和功能,包括中脑特异性特征、氧代谢、神经元成熟和网络活动。此外,与具有显著扩散限制的传统类器官相比,这些工程化类器官在模拟药理反应方面也表现得更好,例如对芬太尼暴露的神经活动变化。将这些独特的支架和工程化类器官相结合,可能为类器官发育和治疗创新提供见解。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验