Li Pei, Faraone Julia N, Hsu Cheng Chih, Chamblee Michelle, Liu Yajie, Zheng Yi-Min, Xu Yan, Carlin Claire, Horowitz Jeffrey C, Mallampalli Rama K, Saif Linda J, Oltz Eugene M, Jones Daniel, Li Jianrong, Gumina Richard J, Bednash Joseph S, Xu Kai, Liu Shan-Lu
Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
bioRxiv. 2024 Sep 5:2024.09.04.611219. doi: 10.1101/2024.09.04.611219.
During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.
2024年夏季,新冠病毒感染病例在全球范围内激增,这是由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的JN.1亚变体衍生出的变种驱动的,这些变种具有新的突变,特别是在刺突蛋白的N端结构域(NTD)。在本研究中,我们报告了这些亚变体——LB.1、KP.2.3、KP.3和KP.3.1.1的中和抗体(nAb)逃逸、感染性、融合和稳定性。我们的研究结果表明,所有这些亚变体都能高度逃避由二价mRNA疫苗、基于XBB.1.5单价腮腺炎病毒的疫苗或BA.2.86/JN.1浪潮期间的感染所引发的nAb。nAb滴度的这种降低主要是由刺突蛋白NTD中的单个丝氨酸缺失(DelS31)驱动的,与亲本JN.1和其他变体相比,导致了独特的抗原谱。我们还发现,DelS31突变降低了伪病毒在CaLu-3细胞中的感染性,这与细胞间融合受损相关。此外,DelS31变体的刺突蛋白在构象上似乎更稳定,这表现为在有或没有可溶性血管紧张素转换酶2(ACE2)刺激的情况下,S1脱落减少,以及对高温的抗性增加。分子建模表明,DelS31突变诱导了一种构象变化,使NTD稳定并加强了NTD-受体结合结构域(RBD)的相互作用,从而有利于RBD的向下构象,并降低了对ACE2受体和某些nAb的可及性。此外,DelS31突变在N30处引入了一个N-连接聚糖修饰,该修饰屏蔽了潜在的NTD区域,使其不被抗体识别。我们的数据突出了刺突蛋白中NTD突变在nAb逃逸、稳定性和病毒感染性方面的关键作用,并建议考虑用含有DelS31的抗原更新新冠疫苗。