Suppr超能文献

新型冠状病毒XEC变异株N端结构域糖基化突变在免疫逃逸、细胞间融合及刺突蛋白稳定性中的作用

Role of glycosylation mutations at the N-terminal domain of SARS-CoV-2 XEC variant in immune evasion, cell-cell fusion, and spike stability.

作者信息

Li Pei, Faraone Julia N, Hsu Cheng Chih, Chamblee Michelle, Liu Yajie, Zheng Yi-Min, Xu Yan, Carlin Claire, Horowitz Jeffrey C, Mallampalli Rama K, Saif Linda J, Oltz Eugene M, Jones Daniel, Li Jianrong, Gumina Richard J, Bednash Joseph S, Xu Kai, Liu Shan-Lu

机构信息

Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA.

Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA.

出版信息

J Virol. 2025 Apr 15;99(4):e0024225. doi: 10.1128/jvi.00242-25. Epub 2025 Mar 26.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, producing new variants that drive global coronavirus disease 2019 surges. XEC, a recombinant of KS.1.1 and KP.3.3, contains T22N and F59S mutations in the spike protein's N-terminal domain (NTD). The T22N mutation, similar to the DelS31 mutation in KP.3.1.1, introduces a potential N-linked glycosylation site in XEC. In this study, we examined the neutralizing antibody (nAb) response and mutation effects in sera from bivalent-vaccinated healthcare workers, BA.2.86/JN.1 wave-infected patients, and XBB.1.5 monovalent-vaccinated hamsters, assessing responses to XEC alongside D614G, JN.1, KP.3, and KP.3.1.1. XEC demonstrated significantly reduced neutralization titers across all cohorts, largely due to the F59S mutation. Notably, removal of glycosylation sites in XEC and KP.3.1.1 substantially restored nAb titers. Antigenic cartography analysis revealed XEC to be more antigenically distinct from its common ancestral BA.2.86/JN.1 compared to KP.3.1.1, with the F59S mutation as a determining factor. Similar to KP.3.1.1, XEC showed reduced cell-cell fusion relative to its parental KP.3, a change attributed to the T22N glycosylation. We also observed reduced S1 shedding for XEC and KP.3.1.1, which was reversed by ablation of T22N and DelS31 glycosylation mutations, respectively. Molecular modeling suggests that T22N and F59S mutations of XEC alter hydrophobic interactions with adjacent spike protein residues, impacting both conformational stability and neutralization. Overall, our findings underscore the pivotal role of NTD mutations in shaping SARS-CoV-2 spike biology and immune escape mechanisms.IMPORTANCEThe continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of novel variants with enhanced immune evasion properties, posing challenges for current vaccination strategies. This study identifies key N-terminal domain (NTD) mutations, particularly T22N and F59S in the recent XEC variant, which significantly impacts antigenicity, neutralization, and spike protein stability. The introduction of an N-linked glycosylation site through T22N, along with the antigenic shift driven by F59S, highlights how subtle mutations can drastically alter viral immune recognition. By demonstrating that glycosylation site removal restores neutralization sensitivity, this work provides crucial insights into the molecular mechanisms governing antibody escape. Additionally, the observed effects on spike protein shedding and cell-cell fusion contribute to a broader understanding of variant fitness and transmissibility. These findings emphasize the importance of monitoring NTD mutations in emerging SARS-CoV-2 lineages and support the need for adaptive vaccine designs to counteract ongoing viral evolution.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)持续进化,产生驱动全球2019冠状病毒病激增的新变种。XEC是KS.1.1和KP.3.3的重组体,在刺突蛋白的N端结构域(NTD)中含有T22N和F59S突变。T22N突变类似于KP.3.1.1中的DelS31突变,在XEC中引入了一个潜在的N-糖基化位点。在本研究中,我们检测了接种二价疫苗的医护人员、BA.2.86/JN.1浪潮感染患者以及接种XBB.1.5单价疫苗的仓鼠血清中的中和抗体(nAb)反应和突变效应,评估了对XEC以及D614G、JN.1、KP.3和KP.3.1.1的反应。XEC在所有队列中的中和滴度均显著降低,主要归因于F59S突变。值得注意的是,去除XEC和KP.3.1.1中的糖基化位点可大幅恢复nAb滴度。抗原图谱分析显示,与KP.3.1.1相比,XEC与其共同祖先BA.2.86/JN.1在抗原性上更具差异,F59S突变是一个决定性因素。与KP.3.1.1类似,相对于其亲本KP.3,XEC的细胞间融合减少,这种变化归因于T22N糖基化。我们还观察到XEC和KP.3.1.1的S1脱落减少,分别通过消除T22N和DelS31糖基化突变而逆转。分子模型表明,XEC的T22N和F59S突变改变了与相邻刺突蛋白残基的疏水相互作用,影响了构象稳定性和中和作用。总体而言,我们的研究结果强调了NTD突变在塑造SARS-CoV-2刺突生物学和免疫逃逸机制中的关键作用。重要性严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的持续进化导致出现具有增强免疫逃逸特性的新型变种,给当前的疫苗接种策略带来挑战。本研究确定了关键的N端结构域(NTD)突变,特别是近期XEC变种中的T22N和F59S,它们显著影响抗原性、中和作用和刺突蛋白稳定性。通过T22N引入N-糖基化位点,以及由F59S驱动的抗原性转变,突出了微小突变如何能极大地改变病毒免疫识别。通过证明去除糖基化位点可恢复中和敏感性,这项工作为控制抗体逃逸的分子机制提供了关键见解。此外,观察到的对刺突蛋白脱落和细胞间融合的影响有助于更广泛地理解变种适应性和传播性。这些发现强调了监测新兴SARS-CoV-2谱系中NTD突变的重要性,并支持需要进行适应性疫苗设计以应对持续的病毒进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24bb/11998534/2a9c1dc1a8f5/jvi.00242-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验