Suppr超能文献

RCC1缺失导致蛋白质转运缺陷和微核破裂。

RCC1 depletion drives protein transport defects and rupture in micronuclei.

作者信息

Zych Molly G, Contreras Maya, Vashisth Manasvita, Mammel Anna E, Ha Gavin, Hatch Emily M

机构信息

Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA.

Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.

出版信息

bioRxiv. 2024 Sep 5:2024.09.04.611299. doi: 10.1101/2024.09.04.611299.

Abstract

Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.

摘要

微核(MN)是一种常用的染色体不稳定性标志物,在有丝分裂后,当错误分离的染色质募集自身的核膜(NE)时形成。微核经常破裂,这会导致基因组不稳定、转移基因上调以及免疫信号增强。微核破裂与核膜缺陷有关,但这些缺陷的原因尚不清楚。我们实验室之前的研究发现,对于小的微核(即含有短染色体的微核),染色体身份与破裂时间相关,常染色质较多的染色体形成的微核更稳定,核纤层间隙较少。在这里,我们证明组蛋白甲基化促进小微核的破裂和核纤层缺陷。这与微核大小增加相关,并且我们进一步发现所有微核都存在组成性核输出缺陷,该缺陷驱动微核生长和核纤层间隙扩大,使微核易于破裂。我们证明这些输出缺陷源于微核中RCC1水平降低,并且小的常染色质微核中低组蛋白甲基化导致的RCC1额外缺失会导致额外的输入缺陷,从而抑制核纤层间隙和微核破裂。通过分析全基因组泛癌分析(PCAWG)数据集中与早期和晚期破裂染色体相关的突变特征,我们分别在早期和中期破裂染色体的染色体碎裂事件中发现APOBEC和DNA聚合酶E高突变特征的富集,这表明微核破裂时间可能决定染色体碎裂中结构变异的格局。我们的研究定义了一种新的微核破裂模型,其中蛋白质输出缺陷导致的微核生长增加,驱动核纤层组织中的间隙形成,使微核易于膜破裂,对基因组结构产生持久影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab58/11398501/454d85085451/nihpp-2024.09.04.611299v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验