Dreher Thorsten, Geciauskas Lukas, Steinfeld Samuel, Procacci Barbara, Whitwood Adrian C, Lynam Jason M, Douthwaite Richard E, Duhme-Klair Anne-K
Department of Chemistry, University of York Heslington YO10 5DD York UK
Chem Sci. 2024 Sep 6;15(39):16186-95. doi: 10.1039/d4sc02784a.
Systems incorporating the -Mo(O) motif catalyse a range of important thermal homogeneous and heterogeneous oxygen atom transfer (OAT) reactions spanning biological oxidations to platform chemical synthesis. Analogous light-driven processes could offer a more sustainable approach. The -Mo(O) complexes reported here photocatalyse OAT under visible light irradiation, and operate a non-emissive excited state with substantial ligand-to-metal charge-transfer (LMCT) character, in which a Mo[double bond, length as m-dash]O π*-orbital is populated transfer of electron density from a chromophoric salicylidene-aminophenol (SAP) ligand. SAP ligands can be prepared from affordable commercially-available precursors. The respective -Mo(O)-SAP catalysts are air stable, function in the presence of water, and do not require additional photosensitisers or redox mediators. Benchmark OAT between phosphines and sulfoxides shows that electron withdrawing groups ( C(O)OMe, CF) are necessary for photocatalytic activity. The photocatalytic system described here is mechanistically distinct from both thermally catalysed OAT by the -Mo(O) motif, as well as typical photoredox systems that operate by outer sphere electron transfer mediated by long-lived emissive states. Both photoactivated and thermally activated OAT steps are coupled to establish a catalytic cycle, offering new opportunities for the development of photocatalytic atom transfer based on readily-available, high-valent metals, such as molybdenum.
包含 -Mo(O) 基序的体系催化一系列重要的热均相和非均相氧原子转移 (OAT) 反应,涵盖生物氧化到平台化学合成。类似的光驱动过程可能提供一种更可持续的方法。本文报道的 -Mo(O) 配合物在可见光照射下光催化 OAT,并以具有大量配体到金属电荷转移 (LMCT) 特征的非发射激发态运行,其中 Mo[双键,长度为 m 破折号]O π* 轨道通过发色水杨醛-氨基酚 (SAP) 配体的电子密度转移而被填充。SAP 配体可由价格低廉的市售前体制备。相应的 -Mo(O)-SAP 催化剂在空气中稳定,在水存在下发挥作用,并且不需要额外的光敏剂或氧化还原介质。膦和亚砜之间的基准 OAT 表明,吸电子基团(C(O)OMe、CF)对于光催化活性是必需的。这里描述的光催化体系在机理上与由 -Mo(O) 基序进行的热催化 OAT 以及通过长寿命发射态介导的外层电子转移运行的典型光氧化还原体系都不同。光活化和热活化的 OAT 步骤都被耦合以建立一个催化循环,为基于易于获得的高价金属(如钼)开发光催化原子转移提供了新机会。