Suppr超能文献

利用全基因组测序和 SNP 系统发育分析鉴定医院暴发疫情中的传播。

Identifying transmission in a hospital outbreak investigation using whole-genome sequencing and SNP phylogenetic analysis.

机构信息

Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA.

出版信息

J Clin Microbiol. 2024 Oct 16;62(10):e0068024. doi: 10.1128/jcm.00680-24. Epub 2024 Sep 16.

Abstract

poses a global public health challenge, causing multiple outbreaks within healthcare facilities. Despite advancements in strain typing for various infectious diseases, a consensus on the genetic relatedness threshold for identifying transmission in local hospital outbreaks remains elusive. We investigated genetic variations within our local isolate collection using whole-genome-based single nucleotide polymorphism (SNP) phylogenetic analysis. A total of 74 . isolates were subjected to whole-genome sequencing (WGS) and SNP phylogenetic analysis via the QIAGEN CLC Genomics Workbench. Isolates included known related strains from the same patient, strains from different hospitals, strains from our hospital patients with no epidemiological link, and 19 patient isolates from a recent outbreak. All but three isolates were identified to be Clade IV. By examining the genetic diversities of within patients and between patients, we identified a SNP variation range of 0-13 for identifying related isolates. During an outbreak investigation, utilizing this range, maximum likelihood phylogenetic analysis revealed two distinct clusters that aligned with the epidemiological links. Determining a SNP variation range to delineate genetic relatedness among isolates is crucial for the application of WGS and SNP phylogenetic analysis in identifying transmission during hospital outbreak investigations. The use of WGS SNP phylogenetic analysis via the CLC Genomics Workbench has emerged as a valuable method for typing in clinical microbiology laboratories.

摘要

导致了医疗机构内的多次爆发。尽管在各种传染病的菌株分型方面取得了进展,但对于确定局部医院爆发中传播的遗传相关性阈值仍未达成共识。我们使用基于全基因组的单核苷酸多态性(SNP)系统发育分析,研究了我们本地分离株集合中的遗传变异。对 74 株 进行了全基因组测序(WGS)和 SNP 系统发育分析,方法是使用 QIAGEN CLC Genomics Workbench。分离株包括来自同一患者的已知相关菌株、来自不同医院的菌株、来自我们医院与流行病学无关的患者的菌株,以及最近一次爆发的 19 例患者分离株。除了三个分离株之外,所有分离株均被鉴定为 Clade IV。通过检查患者内和患者间的遗传多样性,我们确定了用于识别相关分离株的 SNP 变异范围为 0-13。在爆发调查期间,利用这个范围,最大似然系统发育分析显示出与流行病学联系一致的两个不同簇。确定 SNP 变异范围以描绘分离株之间的遗传相关性对于在医院爆发调查中利用 WGS 和 SNP 系统发育分析来识别 传播至关重要。通过 CLC Genomics Workbench 进行 WGS SNP 系统发育分析已成为临床微生物学实验室中 分型的一种有价值的方法。

相似文献

3
Emergence of the novel sixth Clade VI in Bangladesh.孟加拉国新型第六 Clade VI 的出现。
Microbiol Spectr. 2024 Jul 2;12(7):e0354023. doi: 10.1128/spectrum.03540-23. Epub 2024 Jun 6.

本文引用的文献

1
the new fungal threat.新出现的真菌威胁。
Infez Med. 2023 Sep 1;31(3):323-328. doi: 10.53854/liim-3103-6. eCollection 2023.
5
Confirmation of fifth clade by whole genome sequencing.全基因组测序确认第五分支。
Emerg Microbes Infect. 2022 Dec;11(1):2405-2411. doi: 10.1080/22221751.2022.2125349.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验