Suppr超能文献

Hi-C 分析的读取映射。

Read Mapping for Hi-C Analysis.

机构信息

H.U. Group Research Institute, G.K./SRL Inc., Akiruno, Tokyo, Japan.

出版信息

Methods Mol Biol. 2025;2856:25-62. doi: 10.1007/978-1-0716-4136-1_3.

Abstract

Hi-C is a popular ligation-based technique to detect 3D physical chromosome structure within the nucleus using cross-linking and next-generation sequencing. As an unbiased genome-wide assay based on chromosome conformation capture, it provides rich insights into chromosome structure, dynamic chromosome folding and interactions, and the regulatory state of a cell. Bioinformatics analyses of Hi-C data require dedicated protocols as most genome alignment tools assume that both paired-end reads will map to the same chromosome, resulting in large two-dimensional matrices as processed data. Here, we outline the necessary steps to generate high-quality aligned Hi-C data by separately mapping each read while correcting for biases from restriction enzyme digests. We introduce our own custom open-source pipeline, which enables users to select an aligner of their choosing with high accuracy and performance. This enables users to generate high-resolution datasets with fast turnaround and fewer unmapped reads. Finally, we discuss recent innovations in experimental techniques, bioinformatics techniques, and their applications in clinical testing for diagnostics.

摘要

Hi-C 是一种流行的连接酶技术,用于使用交联和下一代测序在核内检测 3D 物理染色体结构。作为一种基于染色体构象捕获的无偏基因组范围检测方法,它提供了对染色体结构、动态染色体折叠和相互作用以及细胞的调控状态的深入了解。Hi-C 数据的生物信息学分析需要专门的方案,因为大多数基因组比对工具都假设成对的末端读数将映射到同一染色体上,从而导致处理后的数据形成大型二维矩阵。在这里,我们概述了通过分别映射每个读数并纠正限制酶消化产生的偏差来生成高质量对齐的 Hi-C 数据的必要步骤。我们引入了自己的定制开源管道,该管道允许用户以高精度和高性能选择他们选择的对齐器。这使用户能够以快速周转和更少未映射读数生成高分辨率数据集。最后,我们讨论了实验技术、生物信息学技术及其在临床诊断测试中的应用的最新创新。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验