Shah Anjay P, Snead William, Daga Anshul, Uddin Rayon, Adiyeke Esra, Loftus Tyler J, Bihorac Azra, Ren Yuanfang, Ozrazgat-Baslanti Tezcan
Intelligent Clinical Care Center, University of Florida, Gainesville, FL, USA.
Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
J Nephrol. 2025 Jan;38(1):75-85. doi: 10.1007/s40620-024-02080-w. Epub 2024 Sep 16.
Acute kidney injury (AKI) is a multifaceted disease characterized by diverse clinical presentations and mechanisms. Advances in artificial intelligence have propelled the identification of AKI subphenotypes, enhancing our capacity to customize treatments and predict disease trajectories.
We conducted a systematic review of the literature from 2017 to 2022, focusing on studies that utilized machine learning techniques to identify AKI subphenotypes in adult patients. Data were extracted regarding patient demographics, clustering methodologies, discriminators, and validation efforts from selected studies.
The review highlights significant variability in subphenotype identification across different populations. All studies utilized clinical data such as comorbidities and laboratory variables to group patients. Two studies incorporated biomarkers of endothelial activation and inflammation into the clinical data to identify subphenotypes. The primary discriminators were comorbidities and laboratory trajectories. The association of AKI subphenotypes with mortality, renal recovery and treatment response was heterogeneous across studies. The use of diverse clustering techniques contributed to variability, complicating the application of findings across different patient populations.
Identifying AKI subphenotypes enables clinicians to better understand and manage individual patient trajectories. Future research should focus on validating these phenotypes in larger, more diverse cohorts to enhance their clinical applicability and support personalized medicine in AKI management.
急性肾损伤(AKI)是一种多方面的疾病,具有多种临床表现和机制。人工智能的进展推动了AKI亚表型的识别,提高了我们定制治疗方案和预测疾病发展轨迹的能力。
我们对2017年至2022年的文献进行了系统综述,重点关注利用机器学习技术识别成年患者AKI亚表型的研究。从选定的研究中提取了有关患者人口统计学、聚类方法、鉴别因素和验证工作的数据。
该综述强调了不同人群中亚表型识别的显著差异。所有研究都利用合并症和实验室变量等临床数据对患者进行分组。两项研究将内皮激活和炎症的生物标志物纳入临床数据以识别亚表型。主要鉴别因素是合并症和实验室指标变化轨迹。在不同研究中,AKI亚表型与死亡率、肾脏恢复和治疗反应之间的关联存在差异。使用多种聚类技术导致了差异,使得研究结果在不同患者群体中的应用变得复杂。
识别AKI亚表型使临床医生能够更好地理解和管理个体患者的疾病发展轨迹。未来的研究应侧重于在更大、更多样化的队列中验证这些表型,以提高其临床适用性,并支持AKI管理中的个性化医疗。