Suppr超能文献

根据共识聚类对 CKD 患者进行亚型分类:慢性肾脏病队列研究(CRIC)。

Subtyping CKD Patients by Consensus Clustering: The Chronic Renal Insufficiency Cohort (CRIC) Study.

机构信息

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

Section of Nephrology, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts.

出版信息

J Am Soc Nephrol. 2021 Mar;32(3):639-653. doi: 10.1681/ASN.2020030239. Epub 2021 Jan 18.

Abstract

BACKGROUND

CKD is a heterogeneous condition with multiple underlying causes, risk factors, and outcomes. Subtyping CKD with multidimensional patient data holds the key to precision medicine. Consensus clustering may reveal CKD subgroups with different risk profiles of adverse outcomes.

METHODS

We used unsupervised consensus clustering on 72 baseline characteristics among 2696 participants in the prospective Chronic Renal Insufficiency Cohort (CRIC) study to identify novel CKD subgroups that best represent the data pattern. Calculation of the standardized difference of each parameter used the cutoff of ±0.3 to show subgroup features. CKD subgroup associations were examined with the clinical end points of kidney failure, the composite outcome of cardiovascular diseases, and death.

RESULTS

The algorithm revealed three unique CKD subgroups that best represented patients' baseline characteristics. Patients with relatively favorable levels of bone density and cardiac and kidney function markers, with lower prevalence of diabetes and obesity, and who used fewer medications formed cluster 1 (=1203). Patients with higher prevalence of diabetes and obesity and who used more medications formed cluster 2 (=1098). Patients with less favorable levels of bone mineral density, poor cardiac and kidney function markers, and inflammation delineated cluster 3 (=395). These three subgroups, when linked with future clinical end points, were associated with different risks of CKD progression, cardiovascular disease, and death. Furthermore, patient heterogeneity among predefined subgroups with similar baseline kidney function emerged.

CONCLUSIONS

Consensus clustering synthesized the patterns of baseline clinical and laboratory measures and revealed distinct CKD subgroups, which were associated with markedly different risks of important clinical outcomes. Further examination of patient subgroups and associated biomarkers may provide next steps toward precision medicine.

摘要

背景

CKD 是一种具有多种潜在病因、风险因素和结局的异质性疾病。利用多维患者数据对 CKD 进行亚型分类是精准医学的关键。共识聚类可能会揭示出具有不同不良结局风险特征的 CKD 亚组。

方法

我们对 2696 例前瞻性慢性肾脏不全队列(CRIC)研究参与者的 72 项基线特征进行了无监督共识聚类,以确定能够最佳代表数据模式的新的 CKD 亚组。使用每个参数的标准化差异的计算,截距为±0.3,以显示亚组特征。使用肾脏衰竭、心血管疾病复合终点和死亡等临床终点来检查 CKD 亚组的关联。

结果

该算法揭示了三个独特的 CKD 亚组,它们能够最佳地代表患者的基线特征。具有相对较好的骨密度和心脏及肾脏功能标志物水平、较低的糖尿病和肥胖患病率以及较少使用药物的患者形成了第 1 组(=1203)。具有较高的糖尿病和肥胖患病率以及较多使用药物的患者形成了第 2 组(=1098)。具有较低的骨矿物质密度、较差的心脏和肾脏功能标志物以及炎症的患者形成了第 3 组(=395)。当将这三个亚组与未来的临床终点联系起来时,它们与 CKD 进展、心血管疾病和死亡的风险不同相关。此外,在具有相似基线肾功能的预先定义的亚组中也出现了患者的异质性。

结论

共识聚类综合了基线临床和实验室测量的模式,并揭示了不同的 CKD 亚组,这些亚组与重要临床结局的明显不同风险相关。对患者亚组和相关生物标志物的进一步研究可能为精准医学提供下一步的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5db/7920178/3f5ecb1e6b0a/ASN.2020030239absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验