Suppr超能文献

使用融合光神经网络,皮质感兴趣区域的重要性可改善从脑电图进行的运动想象解码。

Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network.

作者信息

Wang Linlin, Li Mingai, Xu Dongqin, Yang Yufei

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3636-3646. doi: 10.1109/TNSRE.2024.3461339. Epub 2024 Sep 27.

Abstract

Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.

摘要

在皮层水平使用深度学习解码运动想象(MI)在基于脑机接口的智能康复中具有潜力。然而,大量偶极子不利于提取个性化特征,并且需要更复杂的神经网络。考虑到神经解剖区域(即感兴趣区域,ROI)中神经元的结构和功能相似性,我们提出每个ROI的综合性能可能由一个特定的代表性偶极子(RD)反映,并且所有RD的时频谱同时应用于随机森林算法,以给出每个ROI重要性(RI)的定量度量。然后,通过RI增强划分更细的子带谱功率,并将它们插值到从所有RD的3D空间变换而来的二维(2D)平面上,产生RD特征图像序列的整体表示(ERDFIS)。此外,开发了一种轻量级网络,包括2D可分离卷积和门控循环单元(2DSCG),以从ERDFIS中提取和分类频率-空间和时间特征,形成一种新的皮层水平MI解码方法(称为ERDFIS-2DSCG)。基于两个公共数据集,十折交叉验证的解码准确率分别为89.89%和94.35%。结果表明,RD可以在时频空域中体现ROI的整体特性,并且ROI重要性有助于突出基于个体的MI-EEG特征。同时,2DSCG与ERDFIS匹配良好,共同提高了解码性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验