Suppr超能文献

利用并行多分支卷积神经网络和门控循环单元识别增强的时-空-谱特征。

Recognize enhanced temporal-spatial-spectral features with a parallel multi-branch CNN and GRU.

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China.

出版信息

Med Biol Eng Comput. 2023 Aug;61(8):2013-2032. doi: 10.1007/s11517-023-02857-4. Epub 2023 Jun 9.

Abstract

Deep learning has been applied to the recognition of motor imagery electroencephalograms (MI-EEG) in brain-computer interface, and the performance results depend on data representation as well as neural network structure. Especially, MI-EEG is so complex with the characteristics of non-stationarity, specific rhythms, and uneven distribution; however, its multidimensional feature information is difficult to be fused and enhanced simultaneously in the existing recognition methods. In this paper, a novel channel importance (NCI) based on time-frequency analysis is proposed to develop an image sequence generation method (NCI-ISG) for enhancing the integrity of data representation and highlighting the contribution inequalities of different channels as well. Each electrode of MI-EEG is converted to a time-frequency spectrum by utilizing short-time Fourier transform; the corresponding part to 8-30 Hz is combined with random forest algorithm for computing NCI; and it is further divided into three sub-images covered by α (8-13 Hz), β (13-21 Hz), and β (21-30 Hz) bands; their spectral powers are further weighted by NCI and interpolated to 2-dimensional electrode coordinates, producing three main sub-band image sequences. Then, a parallel multi-branch convolutional neural network and gate recurrent unit (PMBCG) is designed to successively extract and identify the spatial-spectral and temporal features from the image sequences. Two public four-class MI-EEG datasets are adopted; the proposed classification method respectively achieves the average accuracies of 98.26% and 80.62% by 10-fold cross-validation experiment; and its statistical performance is also evaluated by multi-indexes, such as Kappa value, confusion matrix, and ROC curve. Extensive experiment results show that NCI-ISG + PMBCG can yield great performance on MI-EEG classification compared to state-of-the-art methods. The proposed NCI-ISG can enhance the feature representation of time-frequency-space domains and match well with PMBCG, which improves the recognition accuracies of MI tasks and demonstrates the preferable reliability and distinguishable ability. This paper proposes a novel channel importance (NCI) based on time-frequency analysis to develop an image sequences generation method (NCI-ISG) for enhancing the integrity of data representation and highlighting the contribution inequalities of different channels as well. Then, a parallel multi-branch convolutional neural network and gate recurrent unit (PMBCG) is designed to successively extract and identify the spatial-spectral and temporal features from the image sequences.

摘要

深度学习已应用于脑机接口中的运动想象脑电图 (MI-EEG) 的识别,其性能结果取决于数据表示以及神经网络结构。特别是,MI-EEG 非常复杂,具有非平稳性、特定节律和不均匀分布的特点;然而,其多维特征信息在现有的识别方法中很难同时融合和增强。本文提出了一种基于时频分析的新通道重要性 (NCI),用于开发一种图像序列生成方法 (NCI-ISG),以增强数据表示的完整性,并突出不同通道贡献的不平等性。MI-EEG 的每个电极通过短时傅里叶变换转换为时频谱;对应于 8-30 Hz 的部分与随机森林算法结合以计算 NCI;然后将其进一步分为三个子图像,分别覆盖α(8-13 Hz)、β(13-21 Hz)和β(21-30 Hz)带;它们的频谱功率进一步由 NCI 加权并插值到 2 维电极坐标,生成三个主要子带图像序列。然后,设计了一个并行多分支卷积神经网络和门控循环单元 (PMBCG),以从图像序列中依次提取和识别空间-光谱和时间特征。采用两个公共的四分类 MI-EEG 数据集;所提出的分类方法分别通过 10 折交叉验证实验达到 98.26%和 80.62%的平均准确率;并且通过 Kappa 值、混淆矩阵和 ROC 曲线等多指标对其统计性能进行了评估。大量实验结果表明,与最先进的方法相比,NCI-ISG + PMBCG 可以在 MI-EEG 分类中取得更好的性能。所提出的 NCI-ISG 可以增强时频空域的特征表示,并与 PMBCG 很好地匹配,从而提高 MI 任务的识别准确率,并证明了较好的可靠性和可区分能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验