Wang Minjun, Ke Changming, Zhang Han, Hou Chuanyu, Chen Juner, Liu Shi, Wang Jianhui
Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou 324000, China.
Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou 310030, China.
Nano Lett. 2024 Oct 9;24(40):12343-12352. doi: 10.1021/acs.nanolett.4c01532. Epub 2024 Sep 16.
Lithium-rich layered oxides (LLOs) capable of supporting both cationic and anionic redox chemistry are promising cathode materials. Yet, their initial charge to high voltages often trigger significant oxygen evolution, resulting in substantial capacity loss and structural instability. In this study, we applied a straightforward low-potential activation (LOWPA) method alongside a relatively stable electrolyte to address this issue. This approach enables precise control over the order-to-disorder transformation of the transition metal layers in LLOs, producing an in-plane cation-disordered LiMnCoNiO that averts irreversible oxygen evolution at 4.8 V by stabilizing Mn-O or Mn-O species within the Li/Mn-disordered nanopores. Consequently, an ultrahigh reversible capacity of 322 mAh g (equating to 1141 Wh kg), 91.5% initial Coulombic efficiency, and enhanced durability and rate capability are simultaneously achieved. As LOWPA does not alter any chemical composition of LLOs, it also offers a simple model for untangling the complex phenomena associated with oxygen-redox chemistry.
能够支持阳离子和阴离子氧化还原化学的富锂层状氧化物(LLOs)是很有前景的阴极材料。然而,它们初次充电至高电压时常常引发显著的析氧现象,导致大量容量损失和结构不稳定。在本研究中,我们应用了一种简单的低电位活化(LOWPA)方法以及一种相对稳定的电解质来解决这一问题。这种方法能够精确控制LLOs中过渡金属层从有序到无序的转变,生成一种面内阳离子无序的LiMnCoNiO,通过稳定Li/Mn无序纳米孔内的Mn-O或Mn-O物种,避免在4.8 V时发生不可逆析氧。因此,同时实现了322 mAh g的超高可逆容量(相当于1141 Wh kg)、91.5%的初始库仑效率以及增强的耐久性和倍率性能。由于LOWPA不会改变LLOs的任何化学成分,它还为理清与氧氧化还原化学相关的复杂现象提供了一个简单的模型。