Suppr超能文献

叶肉空气空间不饱和驱动 C 植物在水汽压亏缺胁迫下的成功。

Mesophyll airspace unsaturation drives C plant success under vapor pressure deficit stress.

机构信息

Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.

School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2402233121. doi: 10.1073/pnas.2402233121. Epub 2024 Sep 16.

Abstract

A fundamental assumption in plant science posits that leaf air spaces remain vapor saturated, leading to the predominant view that stomata alone control leaf water loss. This concept has been pivotal in photosynthesis and water-use efficiency research. However, recent evidence has refuted this longstanding assumption by providing evidence of unsaturation in the leaf air space of C plants under relatively mild vapor pressure deficit (VPD) stress. This phenomenon represents a nonstomatal mechanism restricting water loss from the mesophyll. The potential ubiquity and physiological implications of this phenomenon, its driving mechanisms in different plant species and habitats, and its interaction with other ecological adaptations have. In this context, C plants spark particular interest for their importance as crops, bundle sheath cells' unique anatomical characteristics and specialized functions, and notably higher water-use efficiency relative to C plants. Here, we confirm reduced relative humidities in the substomatal cavity of the C plants maize, sorghum, and proso millet down to 80% under mild VPD stress. We demonstrate the critical role of nonstomatal control in these plants, indicating that the role of the CO concentration mechanism in CO management at a high VPD may have been overestimated. Our findings offer a mechanistic reconciliation between discrepancies in CO and VPD responses reported in C species. They also reveal that nonstomatal control is integral to maintaining an advantageous microclimate of relatively higher CO concentrations in the mesophyll air space of C plants for carbon fixation, proving vital when these plants face VPD stress.

摘要

植物科学中的一个基本假设是叶片气腔始终保持蒸汽饱和,这导致了一个主要观点,即气孔单独控制叶片水分损失。这个概念在光合作用和水分利用效率研究中一直是至关重要的。然而,最近的证据反驳了这一长期存在的假设,因为它提供了 C 植物在相对温和的蒸汽压亏缺(VPD)胁迫下叶片气腔不饱和的证据。这种现象代表了一种非气孔机制,限制了从叶肉中损失水分。这种现象的普遍存在性和生理学意义、其在不同植物物种和生境中的驱动机制以及与其他生态适应的相互作用,都引起了人们的关注。在这方面,C 植物因其作为作物的重要性、束鞘细胞独特的解剖学特征和特殊功能以及相对较高的水分利用效率而引起了特别的兴趣。在这里,我们证实了在温和的 VPD 胁迫下,C 植物玉米、高粱和谷子的亚气孔腔内的相对湿度降低到 80%以下。我们证明了非气孔控制在这些植物中的关键作用,表明 CO 浓度机制在高 VPD 下 CO 管理中的作用可能被高估了。我们的发现为 C 物种中报道的 CO 和 VPD 响应之间的差异提供了一种机制上的协调,并揭示了非气孔控制对于维持 C 植物叶肉气腔中相对较高 CO 浓度的有利小气候是必不可少的,这对于这些植物在面临 VPD 胁迫时是至关重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a7/11441488/05a682c048e7/pnas.2402233121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验