Suppr超能文献

叶片细胞间隙极度不饱和:是 Gaastra 还是 Ohm 的错?

Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm?

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.

出版信息

Ann Bot. 2022 Sep 19;130(3):301-316. doi: 10.1093/aob/mcac094.

Abstract

BACKGROUND

Recent reports of extreme levels of undersaturation in internal leaf air spaces have called into question one of the foundational assumptions of leaf gas exchange analysis, that leaf air spaces are effectively saturated with water vapour at leaf surface temperature. Historically, inferring the biophysical states controlling assimilation and transpiration from the fluxes directly measured by gas exchange systems has presented a number of challenges, including: (1) a mismatch in scales between the area of flux measurement, the biochemical cellular scale and the meso-scale introduced by the localization of the fluxes to stomatal pores; (2) the inaccessibility of the internal states of CO2 and water vapour required to define conductances; and (3) uncertainties about the pathways these internal fluxes travel. In response, plant physiologists have adopted a set of simplifying assumptions that define phenomenological concepts such as stomatal and mesophyll conductances.

SCOPE

Investigators have long been concerned that a failure of basic assumptions could be distorting our understanding of these phenomenological conductances, and the biophysical states inside leaves. Here we review these assumptions and historical efforts to test them. We then explore whether artefacts in analysis arising from the averaging of fluxes over macroscopic leaf areas could provide alternative explanations for some part, if not all, of reported extreme states of undersaturation.

CONCLUSIONS

Spatial heterogeneities can, in some cases, create the appearance of undersaturation in the internal air spaces of leaves. Further refinement of experimental approaches will be required to separate undersaturation from the effects of spatial variations in fluxes or conductances. Novel combinations of current and emerging technologies hold promise for meeting this challenge.

摘要

背景

最近有报道称,内部叶片气腔中的极度不饱和程度令人质疑叶片气体交换分析的一个基本假设,即叶片气腔在叶表面温度下与水蒸气有效饱和。从历史上看,从气体交换系统直接测量的通量推断控制同化和蒸腾作用的生物物理状态提出了许多挑战,包括:(1)通量测量面积、生化细胞尺度和通量定位到气孔的中尺度之间的尺度不匹配;(2)无法确定定义导度所需的 CO2 和水蒸气的内部状态;(3)对这些内部通量所经过的途径存在不确定性。为了应对这些挑战,植物生理学家采用了一组简化的假设,定义了诸如气孔导度和叶肉导度等现象学概念。

范围

研究人员一直担心基本假设的失败可能会扭曲我们对这些现象学导度和叶片内部生物物理状态的理解。在这里,我们回顾了这些假设和历史上对它们的检验。然后,我们探讨了在宏观叶片面积上对通量进行平均分析产生的假象是否可以为部分(如果不是全部)报告的极度不饱和状态提供替代解释。

结论

在某些情况下,空间异质性会在叶片内部气腔中产生不饱和的表观现象。需要进一步改进实验方法,以将不饱和现象与通量或导度的空间变化的影响分开。当前和新兴技术的新颖组合有望满足这一挑战。

相似文献

本文引用的文献

2
Tansley Review No. 22 What becomes of the transpiration stream?坦斯利评论第22号:蒸腾流去向何方?
New Phytol. 1990 Mar;114(3):341-368. doi: 10.1111/j.1469-8137.1990.tb00404.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验