Suppr超能文献

o-CLEAN:一种新颖的多阶段算法,用于在非实验室应用中从 EEG 数据中校正眼动伪迹。

o-CLEAN: a novel multi-stage algorithm for the ocular artifacts' correction from EEG data in out-of-the-lab applications.

机构信息

Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy.

BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy.

出版信息

J Neural Eng. 2024 Sep 30;21(5). doi: 10.1088/1741-2552/ad7b78.

Abstract

In the context of electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).The main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named multi-stage OCuLar artEfActs deNoising algorithm (o-CLEAN), suitable for online processing with minimal EEG channels.The research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: (a) the ocular artefacts correction performance (IN-Blink), and (b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).Results highlighted that (i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, (ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.The testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.

摘要

在脑电图(EEG)信号处理的背景下,由眼动引起的伪迹,如眨眼,是重要的混杂因素。这些伪迹淹没了有价值的 EEG 特征,而且发生的频率太高,无法简单地去除受影响的时期而不丢失有价值的数据。纠正这些伪迹仍然是一个挑战,特别是在使用可穿戴 EEG 系统的实验室外和在线应用中(即,只有少量 EEG 通道,没有任何额外的通道来跟踪眼电图)。本工作的主要目标是验证一种新的眼动伪迹校正方法,命名为多阶段 OCuLar artEfActs deNoising algorithm(o-CLEAN),适合在线处理,只需要最少的 EEG 通道。研究是在考虑一个在高度受控环境中收集的 EEG 数据集和一个在真实环境中收集的第二个数据集的情况下进行的。分析是通过将 o-CLEAN 方法与以前验证过的最先进技术进行比较,并通过评估其在两个方面的性能来进行的:(a)眼动伪迹校正性能(IN-Blink),和(b)在没有任何眼动伪迹发生时应用该方法对 EEG 信号的保留(OUT-Blink)。结果表明,(i)o-CLEAN 算法在眼动伪迹校正方面至少与科学文献中确定的最可靠方法一样可靠,(ii)o-CLEAN 在 EEG 信号保留方面表现最好,特别是在 EEG 通道数量较少的情况下。o-CLEAN 的测试和验证解决了生物工程 EEG 处理中的一个相关开放问题,特别是在实验室外应用中。事实上,该方法为使用可穿戴系统在真实环境中采集的 EEG 信号提供了一种有效的解决方案,可用于在线处理,并且不需要眼电图的特定模板。它被证明在使用可穿戴系统在真实环境中采集的 EEG 数据方面特别有效,这是应用神经科学中一个快速发展的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验