Ronca Vincenzo, Capotorto Rossella, Di Flumeri Gianluca, Giorgi Andrea, Vozzi Alessia, Germano Daniele, Virgilio Valerio Di, Borghini Gianluca, Cartocci Giulia, Rossi Dario, Inguscio Bianca M S, Babiloni Fabio, Aricò Pietro
Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy.
BrainSigns S.r.l., Industrial Neurosciences Lab, 00198 Rome, Italy.
Bioengineering (Basel). 2024 Oct 12;11(10):1018. doi: 10.3390/bioengineering11101018.
Ocular artifacts, including blinks and saccades, pose significant challenges in the analysis of electroencephalographic (EEG) data, often obscuring crucial neural signals. This tutorial provides a comprehensive guide to the most effective methods for correcting these artifacts, with a focus on algorithms designed for both laboratory and real-world settings. We review traditional approaches, such as regression-based techniques and Independent Component Analysis (ICA), alongside more advanced methods like Artifact Subspace Reconstruction (ASR) and deep learning-based algorithms. Through detailed step-by-step instructions and comparative analysis, this tutorial equips researchers with the tools necessary to maintain the integrity of EEG data, ensuring accurate and reliable results in neurophysiological studies. The strategies discussed are particularly relevant for wearable EEG systems and real-time applications, reflecting the growing demand for robust and adaptable solutions in applied neuroscience.
眼部伪迹,包括眨眼和眼球快速运动,在脑电图(EEG)数据分析中构成了重大挑战,常常掩盖关键的神经信号。本教程全面介绍了校正这些伪迹的最有效方法,重点关注针对实验室和现实环境设计的算法。我们回顾了传统方法,如基于回归的技术和独立成分分析(ICA),以及更先进的方法,如意 artifact 子空间重建(ASR)和基于深度学习的算法。通过详细的分步说明和比较分析,本教程为研究人员提供了维护 EEG 数据完整性所需的工具,确保神经生理学研究结果的准确可靠。所讨论的策略与可穿戴 EEG 系统和实时应用特别相关,反映了应用神经科学对强大且适应性强的解决方案的需求不断增长。