Suppr超能文献

利用可解释的机器学习框架揭示中国主要冬小麦区臭氧污染与农业生产力之间的复杂相互作用。

Unraveling the complex interactions between ozone pollution and agricultural productivity in China's main winter wheat region using an interpretable machine learning framework.

机构信息

School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China.

School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai 519082, China.

出版信息

Sci Total Environ. 2024 Dec 1;954:176293. doi: 10.1016/j.scitotenv.2024.176293. Epub 2024 Sep 14.

Abstract

Surface ozone has become a significant atmospheric pollutant in China, exerting a profound impact on crop production and posing a serious threat to food security. Previous studies have extensively explored the physiological mechanisms of ozone damage to plants. However, the effects of ozone interactions with other environmental factors, such as climate change, on agricultural productivity at the regional scale, particularly under natural conditions, remain insufficiently understood. In this study, we employed an interpretable machine learning framework, specifically the eXtreme Gradient Boosting (XGBoost) algorithm enhanced by SHapley Additive exPlanations (SHAP), to investigate the influence of ozone and its interactions with environmental factors on crop production in China's primary winter wheat region. Additionally, a structural equation model was developed to elucidate the mechanisms driving these interactions. Our findings demonstrate that ozone pollution exerts a significant negative effect on winter wheat productivity (r = -0.47, P < 0.001), with productivity losses escalating from -12.28 % to -22.09 % as ozone levels increase. Notably, the impact of ozone is spatially heterogeneous, with western Shandong province identified as a hotspot for ozone-induced damage. Furthermore, our results confirm the complexity of the relationship between ozone pollution and agricultural productivity, which is influenced by multiple interacting environmental factors. Specifically, we found that severe ozone pollution, when combined with high aerosol concentrations or elevated temperatures, significantly exacerbates crop productivity losses, although drought conditions can partially mitigate these adverse effects. Our study highlights the importance of incorporating the interactive effects of air pollution and climate change into future crop models. The comprehensive framework developed in this study, which integrates statistical modeling with explainable machine learning, provides a valuable methodological reference for quantitatively assessing the impact of air pollution on crop productivity at a regional scale.

摘要

在中国,地表臭氧已成为一种主要的大气污染物,对作物生产造成了深远影响,对粮食安全构成了严重威胁。先前的研究广泛探讨了臭氧对植物的生理机制损害。然而,在区域尺度上,特别是在自然条件下,臭氧与气候变化等其他环境因素相互作用对农业生产力的影响仍了解不足。在本研究中,我们采用了一种可解释的机器学习框架,具体为通过 SHapley Additive exPlanations (SHAP) 增强的极端梯度提升 (XGBoost) 算法,来研究臭氧及其与环境因素的相互作用对中国主要冬小麦区作物产量的影响。此外,还开发了结构方程模型来阐明驱动这些相互作用的机制。我们的研究结果表明,臭氧污染对冬小麦生产力产生了显著的负面影响(r = -0.47,P < 0.001),随着臭氧水平的升高,生产力损失从 -12.28%增加到 -22.09%。值得注意的是,臭氧的影响具有空间异质性,西部的山东省被确定为臭氧诱导损害的热点地区。此外,我们的研究结果证实了臭氧污染与农业生产力之间关系的复杂性,这种关系受到多个相互作用的环境因素的影响。具体而言,我们发现,严重的臭氧污染与高气溶胶浓度或高温结合时,会显著加剧作物生产力损失,尽管干旱条件可以部分减轻这些不利影响。我们的研究强调了将空气污染和气候变化的交互作用纳入未来作物模型的重要性。本研究中开发的综合框架,将统计建模与可解释的机器学习相结合,为定量评估空气污染对区域尺度作物生产力的影响提供了有价值的方法学参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验