Zou Xinyu, Li Xinlong, Wang Dali, Wang Ju
College of New Energy and Environment, Jilin University, Changchun 130012, China.
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Toxics. 2025 Jun 13;13(6):500. doi: 10.3390/toxics13060500.
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)-random forest (RF), support vector machine (SVM), and artificial neural network (ANN)-are employed to quantify the influence of meteorological and non-meteorological factors on O concentrations. Finally, the HYSPLIT clustering method and CMAQ model are utilized to analyze inter-regional transport characteristics, identifying the causes of O pollution. The results indicate that O pollution in Liaoyuan exhibits a distinct seasonal pattern, with the highest concentrations found in spring and summer, peaking in the afternoon. Among the three ML models, the random forest model demonstrates the best predictive performance (R = 0.9043). Feature importance identifies NO as the primary driving factor, followed by meteorological conditions in the second quarter and land surface characteristics. Furthermore, regional transport significantly contributes to O pollution, with approximately 80% of air mass trajectories in heavily polluted episodes originating from adjacent industrial areas and the sea. The combined effects of transboundary precursors and O transport with local emissions and meteorological conditions further increase the O pollution level. This study highlights the need to strengthen coordinated NO and VOCs emission reductions and enhance regional joint prevention and control strategies in China.
首先,本研究利用2015年至2024年的监测数据,调查辽源市臭氧(O)污染的时空分布特征。然后,采用三种机器学习模型(ML)——随机森林(RF)、支持向量机(SVM)和人工神经网络(ANN)——来量化气象和非气象因素对O浓度的影响。最后,利用HYSPLIT聚类方法和CMAQ模型分析区域间传输特征,确定O污染的成因。结果表明,辽源市的O污染呈现出明显的季节模式,春季和夏季浓度最高,下午达到峰值。在三种ML模型中,随机森林模型表现出最佳的预测性能(R = 0.9043)。特征重要性分析表明,NO是主要驱动因素,其次是第二季度的气象条件和地表特征。此外,区域传输对O污染有显著贡献,在重度污染事件中,约80%的气团轨迹来自相邻工业区和海洋。跨界前体物与O传输与本地排放和气象条件的综合作用进一步提高了O污染水平。本研究强调了中国加强NO和VOCs协同减排以及加强区域联防联控策略的必要性。