Valeanu Andrei, Margina Denisa, Weber Daniela, Stuetz Wolfgang, Moreno-Villanueva María, Dollé Martijn E T, Jansen Eugène Hjm, Gonos Efstathios S, Bernhardt Jürgen, Grubeck-Loebenstein Beatrix, Weinberger Birgit, Fiegl Simone, Sikora Ewa, Mosieniak Grazyna, Toussaint Olivier, Debacq-Chainiaux Florence, Capri Miriam, Garagnani Paolo, Pirazzini Chiara, Bacalini Maria Giulia, Hervonen Antti, Slagboom P Eline, Talbot Duncan, Breusing Nicolle, Frank Jan, Bürkle Alexander, Franceschi Claudio, Grune Tilman, Gradinaru Daniela
Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany.
Mech Ageing Dev. 2024 Dec;222:111987. doi: 10.1016/j.mad.2024.111987. Epub 2024 Sep 14.
The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and cardiometabolic risk factors from MARK-AGE data. A cross-sectional observational study was carried out on 1089 subjects (528 men and 561 women), aged 40-75 years old, randomly recruited age- and sex-stratified individuals from the general population. A correlation analysis exploring the relationships between LDLox and relevant biomarkers was undertaken, as well as the development and validation of several machine learning algorithms, for estimating the risk of the combined status of high blood pressure and obesity for the MARK-AGE subjects. The machine learning models yielded Area Under the Receiver Operating Characteristic Curve Score ranging 0.783-0.839 for the internal validation, while the external validation resulted in an Under the Receiver Operating Characteristic Curve Score between 0.648 and 0.787, with the variables based on LDLox reaching significant importance within the obtained predictions. The current study offers novel insights regarding the combined effects of LDL oxidation and other ageing markers on cardiometabolic risk. Future studies might be extended on larger patient cohorts, in order to obtain reproducible clinical assessment models.
低密度脂蛋白颗粒氧化易感性(LDLox)在心脏代谢风险评估中的预测价值尚未完全明确。本研究的主要目的是根据MARK-AGE数据评估其与其他相关生物标志物及心脏代谢风险因素之间的关系。对1089名年龄在40 - 75岁之间的受试者(528名男性和561名女性)进行了一项横断面观察性研究,这些受试者是从普通人群中随机招募的年龄和性别分层个体。进行了相关性分析,以探究LDLox与相关生物标志物之间的关系,并开发和验证了几种机器学习算法,用于估计MARK-AGE受试者患高血压和肥胖合并症的风险。机器学习模型在内部验证中的受试者操作特征曲线下面积(AUC)得分在0.783 - 0.839之间,而外部验证的受试者操作特征曲线下面积得分在0.648至0.787之间,基于LDLox的变量在所获得的预测中具有显著重要性。本研究为LDL氧化和其他衰老标志物对心脏代谢风险的联合作用提供了新的见解。未来的研究可能会在更大的患者队列中展开,以获得可重复的临床评估模型。