Suppr超能文献

我们准备好将先进的人工智能模型整合到临床实验室中了吗?

Are we ready to integrate advanced artificial intelligence models in clinical laboratory?

作者信息

Dodig Slavica, Čepelak Ivana, Dodig Matko

机构信息

Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.

Information System and Information Technologies Support Agency, CDU infrastructure management department, Zagreb, Croatia.

出版信息

Biochem Med (Zagreb). 2025 Feb 15;35(1):010501. doi: 10.11613/BM.2025.010501. Epub 2024 Dec 15.

Abstract

The application of advanced artificial intelligence (AI) models and algorithms in clinical laboratories is a new inevitable stage of development of laboratory medicine, since in the future, diagnostic and prognostic panels specific to certain diseases will be created from a large amount of laboratory data. Thanks to machine learning (ML), it is possible to analyze a large amount of structured numerical data as well as unstructured digitized images in the field of hematology, cytology and histopathology. Numerous researches refer to the testing of ML models for the purpose of screening various diseases, detecting damage to organ systems, diagnosing malignant diseases, longitudinal monitoring of various biomarkers that would enable predicting the outcome of each patient's treatment. The main advantages of advanced AI in the clinical laboratory are: faster diagnosis using diagnostic and prognostic algorithms, individualization of treatment plans, personalized medicine, better patient treatment outcomes, easier and more precise longitudinal monitoring of biomarkers, . Disadvantages relate to the lack of standardization, questionable quality of the entered data and their interpretability, potential over-reliance on technology, new financial investments, privacy concerns, ethical and legal aspects. Further integration of advanced AI will gradually take place on the basis of the knowledge of specialists in laboratory and clinical medicine, experts in information technology and biostatistics, as well as on the basis of evidence-based laboratory medicine. Clinical laboratories will be ready for the full and successful integration of advanced AI once a balance has been established between its potential and the resolution of existing obstacles.

摘要

先进的人工智能(AI)模型和算法在临床实验室中的应用是检验医学发展的一个新的必然阶段,因为未来将从大量实验室数据中创建特定疾病的诊断和预后指标。借助机器学习(ML),可以在血液学、细胞学和组织病理学领域分析大量结构化数值数据以及非结构化数字化图像。众多研究涉及对ML模型进行测试,以筛查各种疾病、检测器官系统损伤、诊断恶性疾病、对各种生物标志物进行纵向监测,从而能够预测每位患者的治疗结果。先进AI在临床实验室中的主要优势包括:使用诊断和预后算法实现更快诊断、治疗计划个性化、精准医疗、改善患者治疗效果、更轻松且精确地对生物标志物进行纵向监测。缺点包括缺乏标准化、输入数据的质量和可解释性存疑、可能过度依赖技术、新的资金投入、隐私问题、伦理和法律方面。先进AI的进一步整合将在检验医学和临床医学专家、信息技术和生物统计学专家的知识基础上,以及循证检验医学的基础上逐步进行。一旦在其潜力与现有障碍的解决之间建立平衡,临床实验室将为先进AI的全面成功整合做好准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/711b/11654238/32441f0f655d/bm-35-1-010501-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验