Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
Environ Res. 2024 Dec 15;263(Pt 1):120011. doi: 10.1016/j.envres.2024.120011. Epub 2024 Sep 14.
Microalgae-assisted bioremediation, enriched by nanomaterial integration, offers a sustainable approach to environmental pollution mitigation while harnessing microalgae's potential as a biocatalyst and biorefinery resource. This strategy explores the interaction between microalgae, nanomaterials, and bioremediation, advancing sustainability objectives. The potent combination of microalgae and nanomaterials highlights the biorefinery's promise in effective pollutant removal and valuable algal byproduct production. Various nanomaterials, including metallic nanoparticles and semiconductor quantum dots, are reviewed for their roles in inorganic and organic pollutant removal and enhancement of microalgae growth. Limited studies have been conducted to establish nanomaterial's (CeO ZnO, FeO AlO etc.) role on microalgae in pollution remediation; most studies cover inorganic pollutants (heavy metals and nutrients) remediation, exhibited 50-300% bioremediation efficiency improvement; however, some studies cover antibiotics and toxic dyes removal efficiency with 19-95% improvement. These aspects unveil the complex mechanisms underlying nanomaterial-pollutant-microalgae interactions, focusing on adsorption, photocatalysis, and quantum dot properties. Strategies to enhance bioremediation efficiency are discussed, including pollutant uptake improvement, real-time control, tailored nanomaterial design, and nutrient recovery. The review assesses recent advancements, navigates challenges, and envisions a sustainable future for bioremediation, underlining the transformative capacity of nanomaterial-driven microalgae-assisted bioremediation. This work aligns with Sustainable Development Goals 6 (Clean Water and Sanitation) and 12 (Responsible Consumption and Production) by exploring nanomaterial-enhanced microalgae bioremediation for sustainable pollution management and resource utilization.
微藻辅助生物修复,通过纳米材料的整合得到了丰富,为减轻环境污染提供了一种可持续的方法,同时利用微藻作为生物催化剂和生物炼制资源的潜力。该策略探索了微藻、纳米材料和生物修复之间的相互作用,推进了可持续性目标。微藻和纳米材料的强强联合凸显了生物炼制在有效去除污染物和生产有价值的藻类副产物方面的潜力。各种纳米材料,包括金属纳米粒子和半导体量子点,都被审查了它们在无机和有机污染物去除以及增强微藻生长方面的作用。已经进行了有限的研究来确定纳米材料(CeO、ZnO、FeO、AlO 等)在污染修复中对微藻的作用;大多数研究涵盖了无机污染物(重金属和营养物)的修复,表现出 50-300%的生物修复效率提高;然而,一些研究涵盖了抗生素和有毒染料去除效率的提高,达到了 19-95%。这些方面揭示了纳米材料-污染物-微藻相互作用的复杂机制,重点是吸附、光催化和量子点特性。讨论了提高生物修复效率的策略,包括改善污染物吸收、实时控制、定制纳米材料设计和营养物质回收。本综述评估了最新进展,探讨了所面临的挑战,并设想了生物修复的可持续未来,强调了纳米材料驱动的微藻辅助生物修复的变革能力。这项工作符合可持续发展目标 6(清洁水和卫生设施)和 12(负责任的消费和生产),通过探索纳米材料增强的微藻生物修复来实现可持续的污染管理和资源利用。