El-Sheekh Mostafa M, El-Kassas Hala Y, Ali Sameh S
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
National Institute of Oceanography and Fisheries, NIOF, Alexandria, 21556, Egypt.
Microb Cell Fact. 2025 Jan 14;24(1):19. doi: 10.1186/s12934-024-02638-0.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants. This is due to their advantages, such as rapid growth rate, cost-effectiveness, high oil-rich biomass production, and ease of implementation. Moreover, microalgae-based remediation is more environmentally sustainable for not generating additional waste sludge, capturing atmospheric CO, and being efficient for nutrient recycling and sustainable algal biomass production for biofuels and high-value-added products generation. Hence, microalgae can achieve sustainability's three main pillars (environmental, economic, and social). Microalgal biomass can mediate contaminated wastewater effectively through accumulation, adsorption, and metabolism. These mechanisms enable the microalgae to reduce the concentration of heavy metals and organic contaminants to levels that are considered non-toxic. However, several factors, such as microalgal strain, cultivation technique, and the type of pollutants, limit the understanding of the microalgal removal mechanism and efficiency. Furthermore, adopting novel technological advancements (e.g., nanotechnology) may serve as a viable approach to address the challenge of refractory pollutants and bioremediation process sustainability. Therefore, this review discusses the mechanism and the ability of different microalgal species to mitigate persistent refractory pollutants, such as industrial effluents, dyes, pesticides, and pharmaceuticals. Also, this review paper provided insight into the production of nanomaterials, nanoparticles, and nanoparticle-based biosensors from microalgae and the immobilization of microalgae on nanomaterials to enhance bioremediation process efficiency. This review may open a new avenue for future advancing research regarding a sustainable biodegradation process of refractory pollutants.
广泛的人类活动导致有机和无机污染物在各种生态系统中积累,这给环境及其居民带来了重大挑战。利用微藻作为生物修复工具可能为这些挑战提供一个潜在的解决方案。微藻作为一种有前途的生物技术解决方案,用于解毒环境污染物,已受到广泛关注。这是由于它们具有快速生长速度、成本效益高、富含油脂的生物质产量高以及易于实施等优点。此外,基于微藻的修复在环境方面更具可持续性,因为它不会产生额外的废污泥,能够捕获大气中的二氧化碳,并且在营养物质循环和可持续藻类生物质生产以用于生物燃料和高附加值产品生产方面效率很高。因此,微藻可以实现可持续性的三个主要支柱(环境、经济和社会)。微藻生物质可以通过积累、吸附和代谢有效地介导受污染的废水。这些机制使微藻能够将重金属和有机污染物的浓度降低到被认为无毒的水平。然而,一些因素,如微藻菌株、培养技术和污染物类型,限制了对微藻去除机制和效率的理解。此外,采用新颖的技术进步(如纳米技术)可能是解决难降解污染物挑战和生物修复过程可持续性的可行方法。因此,本综述讨论了不同微藻物种减轻持久性难降解污染物(如工业废水、染料、农药和药物)的机制和能力。此外,本综述文章还深入探讨了从微藻生产纳米材料、纳米颗粒和基于纳米颗粒的生物传感器,以及将微藻固定在纳米材料上以提高生物修复过程效率的情况。本综述可能为未来推进难降解污染物可持续生物降解过程的研究开辟一条新途径。
Microb Cell Fact. 2025-1-14
Arch Microbiol. 2024-7-5
Environ Sci Pollut Res Int. 2021-11
Cells. 2024-7-2
Environ Pollut. 2023-1-15
Int J Mol Sci. 2025-3-11
World J Microbiol Biotechnol. 2024-10-8
Bioresour Technol. 2024-12
Arch Microbiol. 2024-7-5
Environ Sci Ecotechnol. 2024-4-25
Environ Pollut. 2024-5-15