Ji Qianqian, Tang Bing, Zhang Xilin, Wang Chao, Tan Hao, Zhao Jie, Liu Ruiqi, Sun Mei, Liu Hengjie, Jiang Chang, Zeng Jianrong, Cai Xingke, Yan Wensheng
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.
Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China.
Nat Commun. 2024 Sep 16;15(1):8089. doi: 10.1038/s41467-024-52471-7.
The microscopic reaction pathway plays a crucial role in determining the electrochemical performance. However, artificially manipulating the reaction pathway still faces considerable challenges. In this study, we focus on the classical acidic water oxidation based on RuO catalysts, which currently face the issues of low activity and poor stability. As a proof-of-concept, we propose a strategy to create local structural symmetry but oxidation-state asymmetric Mn-O-Ru active sites by introducing Mn atoms into RuO host, thereby switching the reaction pathway from traditional adsorbate evolution mechanism to oxide path mechanism. Through advanced operando synchrotron spectroscopies and density functional theory calculations, we demonstrate the synergistic effect of dual-active metal sites in asymmetric Mn-O-Ru microstructure in optimizing the adsorption energy and rate-determining step barrier via an oxide path mechanism. This study highlights the importance of engineering reaction pathways and provides an alternative strategy for promoting acidic water oxidation.
微观反应路径在决定电化学性能方面起着关键作用。然而,人工操纵反应路径仍面临相当大的挑战。在本研究中,我们聚焦于基于RuO催化剂的经典酸性水氧化反应,目前该反应面临活性低和稳定性差的问题。作为概念验证,我们提出一种策略,通过将Mn原子引入RuO主体中,创建局部结构对称但氧化态不对称的Mn-O-Ru活性位点,从而将反应路径从传统的吸附质析出机制转变为氧化物路径机制。通过先进的原位同步辐射光谱和密度泛函理论计算,我们证明了不对称Mn-O-Ru微观结构中双活性金属位点在通过氧化物路径机制优化吸附能和速率决定步骤势垒方面的协同效应。本研究突出了设计反应路径的重要性,并为促进酸性水氧化提供了一种替代策略。