Qin Qing, Li Zijian, Zhao Xuhao, Zhao Hongyan, Zhai Li, Gyu Kim Min, Cho Jaephil, Jang Haeseong, Liu Shangguo, Liu Xien
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413657. doi: 10.1002/anie.202413657. Epub 2024 Oct 24.
Regulating the catalytic reaction pathway to essentially break the activity/stability trade-off that limits RuO and thus achieves exceptional stability and activity for the acidic oxygen evolution reaction (OER) is important yet challenging. Herein, we propose a novel strategy of incorporating atomically dispersed V species, including O-bridged V dimers and V single atoms, into RuO lattices to trigger direct O-O radical coupling to release O without the generation of *OOH intermediates. V-RuO showed high activity with a low overpotential of 227 mV at 10 mA cm and outstanding stability during a 1050 h test in acidic electrolyte. Operando spectroscopic studies and theoretical calculations revealed that compared with the V single atom-doping case, the introduction of the V dimer into RuO further decreases the Ru-V atomic distance and weakens the adsorption strength of the *O intermediate to the active V site, which supports the more energetically favorable oxygen radical coupling mechanism (OCM). Furthermore, the highly asymmetric Ru-O-V local structure stabilizes the surface Ru active center by lowering the valence state and increasing the resistance against overoxidation, which result in outstanding stability. This study provides insight into ways of increasing the intrinsic catalytic activity and stability of RuO by atomically dispersed species modification.
调控催化反应路径以从根本上打破限制RuO的活性/稳定性权衡,从而实现酸性析氧反应(OER)的卓越稳定性和活性,这一点很重要但具有挑战性。在此,我们提出一种新颖的策略,即将包括O桥连V二聚体和V单原子在内的原子分散V物种掺入RuO晶格中,以触发直接的O - O自由基偶联来释放O,而不产生OOH中间体。V - RuO在10 mA cm时具有227 mV的低过电位,表现出高活性,并且在酸性电解质中进行的1050 h测试期间具有出色的稳定性。原位光谱研究和理论计算表明,与V单原子掺杂情况相比,将V二聚体引入RuO进一步减小了Ru - V原子间距,并削弱了O中间体对活性V位点的吸附强度,这支持了能量上更有利的氧自由基偶联机制(OCM)。此外,高度不对称的Ru - O - V局部结构通过降低价态和增加抗过氧化能力来稳定表面Ru活性中心,从而产生出色的稳定性。这项研究为通过原子分散物种修饰提高RuO的本征催化活性和稳定性提供了思路。