Suppr超能文献

超晶格阴极使阳离子和阴离子共嵌入,用于高能量密度铝电池。

Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries.

作者信息

Cui Fangyan, Li Jingzhen, Lai Chen, Li Changzhan, Sun Chunhao, Du Kai, Wang Jinshu, Li Hongyi, Huang Aoming, Peng Shengjie, Hu Yuxiang

机构信息

Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.

Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.

出版信息

Nat Commun. 2024 Sep 16;15(1):8108. doi: 10.1038/s41467-024-51570-9.

Abstract

Conventionally, rocking-chair batteries capacity primarily depends on cation shuttling. However, intrinsically high-charge-density metal-ions, such as Al, inevitably cause strong Coulombic ion-lattice interactions, resulting in low practical energy density and inferior long-term stability towards rechargeable aluminium batteries (RABs). Herein, we introduce tunable quantum confinement effects and tailor a family of anion/cation co-(de)intercalation superlattice cathodes, achieving high-voltage anion charge compensation, with extra-capacity, in RABs. The optimized superlattice cathode with adjustable van der Waals not only enables facile traditional cation (de)intercalation, but also activates O compensation with an extra anion reaction. Furthermore, the constructed cathode delivers high energy-density (466 Wh kg at 107 W kg) and one of the best cycle stability (225 mAh g over 3000 cycles at 2.0 A g) in RABs. Overall, the anion-involving redox mechanism overcomes the bottlenecks of conventional electrodes, thereby heralding a promising advance in energy-storage-systems.

摘要

传统上,摇椅式电池的容量主要取决于阳离子穿梭。然而,诸如铝等本征高电荷密度金属离子不可避免地会引起强烈的库仑离子-晶格相互作用,导致可充电铝电池(RABs)的实际能量密度较低且长期稳定性较差。在此,我们引入可调谐量子限制效应,并定制了一系列阴离子/阳离子共(脱)嵌入超晶格阴极,在RABs中实现了具有额外容量的高压阴离子电荷补偿。具有可调范德华力的优化超晶格阴极不仅能够实现传统阳离子的轻松(脱)嵌入,还能通过额外的阴离子反应激活氧补偿。此外,所构建的阴极在RABs中提供了高能量密度(在107 W kg时为466 Wh kg)和最佳循环稳定性之一(在2.0 A g下3000次循环中为225 mAh g)。总体而言,涉及阴离子的氧化还原机制克服了传统电极的瓶颈,从而预示着储能系统有前景的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a7d/11405694/0474d2acb06e/41467_2024_51570_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验