Suppr超能文献

在电子健康记录中改善对无家可归患者的识别:一种精心策划的登记方法。

Improving Identification of Patients Experiencing Homelessness in the Electronic Health Record: A Curated Registry Approach.

作者信息

Stella Sarah A, Hanratty Rebecca, Davidson Arthur J, Podewils Laura J, Elliott Laura, Keith Amy, Everhart Rachel

机构信息

Department of Medicine, Denver Health, Denver, CO, USA.

Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA.

出版信息

J Gen Intern Med. 2024 Dec;39(16):3113-3119. doi: 10.1007/s11606-024-08909-1. Epub 2024 Sep 16.

Abstract

BACKGROUND

Identification of persons experiencing homelessness (PEH) within healthcare systems is critical to facilitate patient and population-level interventions to address health inequities.

OBJECTIVE

We created an enhanced electronic health record (EHR) registry to improve identification of PEH within a safety net healthcare system.

DESIGN

We compared patients identified as experiencing homelessness in 2021, stratified by method of identification (i.e., through registration data sources versus through new EHR registry criteria).

MAIN MEASURES

Sociodemographic and clinical characteristics, healthcare utilization, engagement with homeless service providers, and mortality.

KEY RESULTS

In total, 10,896 patients met the registry definition of a PEH; 30% more than identified through standard registration processes; 78% were identified through only one data source. Compared with those identified only through registration data, PEH identified through new registry criteria were more likely to be female (42% vs. 25%, p < 0.001), Hispanic/Latinx or Black/African American (30% versus 25% and 25% vs. 18%, p < 0.0001), and Medicaid or Medicare beneficiaries (74% vs. 67% and 16% vs.10%, respectively, p < 0.0001). New data sources also identified a higher proportion of patients: at extremes of age (16% < 18 years and 9% ≥ 65 years vs. 2% and 5%, respectively, p < 0.0001), with increased clinical risk (31% with CRG 6-9 vs. 18%, p < 0.0001), and with a mental health diagnosis (56% vs. 42%, p < 0.0001), and a lower proportion of patients with a substance use diagnosis (39% vs. 54%, p < 0.0001) or criminal justice involvement (8% vs. 15%, p < 0.0001). Newly identified patients were more likely to be engaged in primary care (OR 2.03, 95% CI 1.83-2.26) but less likely to be engaged with homeless service providers (OR 0.70, 95% CI 0.63-0.77).

CONCLUSIONS

Commonly utilized methods of identifying PEH within healthcare systems may underestimate the population and introduce reporting biases. Recognizing alternate identification methods may more comprehensively and inclusively identify PEH for intervention.

摘要

背景

在医疗保健系统中识别无家可归者对于推动针对患者和人群层面的干预措施以解决健康不平等问题至关重要。

目的

我们创建了一个强化电子健康记录(EHR)登记系统,以改善在安全网医疗保健系统中对无家可归者的识别。

设计

我们比较了2021年被确定为无家可归的患者,按识别方法分层(即通过登记数据源与通过新的EHR登记标准)。

主要指标

社会人口统计学和临床特征、医疗保健利用情况、与无家可归服务提供者的接触情况以及死亡率。

关键结果

总共有10896名患者符合无家可归者的登记定义;比通过标准登记流程识别的患者多30%;78%是通过单一数据源识别的。与仅通过登记数据识别的患者相比,通过新登记标准识别的无家可归者更可能为女性(42%对25%,p<0.001)、西班牙裔/拉丁裔或黑人/非裔美国人(分别为30%对25%和25%对18%,p<0.0001)以及医疗补助或医疗保险受益人(分别为74%对67%和16%对10%,p<0.0001)。新数据源还识别出更高比例的患者:处于年龄极端情况(16%<18岁和9%≥65岁,分别对比2%和5%,p<0.0001)、临床风险增加(31%的患者临床风险组为6 - 9级,对比18%,p<0.0001)、有心理健康诊断(56%对比42%,p<0.0001),以及有物质使用诊断或涉及刑事司法的患者比例较低(39%对比54%,p<0.0001;8%对比15%,p<0.0001)。新识别出的患者更可能接受初级保健(比值比2.03,95%置信区间1.83 - 2.26),但与无家可归服务提供者接触的可能性较小(比值比0.70,95%置信区间0.63 - 0.77)。

结论

在医疗保健系统中常用的识别无家可归者的方法可能会低估该人群数量并引入报告偏差。认识到替代识别方法可能会更全面、更包容地识别无家可归者以进行干预。

相似文献

6
Shared decision-making for people with asthma.哮喘患者的共同决策
Cochrane Database Syst Rev. 2017 Oct 3;10(10):CD012330. doi: 10.1002/14651858.CD012330.pub2.
8
Strategies to improve smoking cessation rates in primary care.提高初级保健中戒烟率的策略。
Cochrane Database Syst Rev. 2021 Sep 6;9(9):CD011556. doi: 10.1002/14651858.CD011556.pub2.
9
Intensive case management for severe mental illness.严重精神疾病的强化个案管理。
Cochrane Database Syst Rev. 2010 Oct 6(10):CD007906. doi: 10.1002/14651858.CD007906.pub2.

引用本文的文献

本文引用的文献

8
National diabetes registries: do they make a difference?国家糖尿病登记处:它们有作用吗?
Acta Diabetol. 2021 Mar;58(3):267-278. doi: 10.1007/s00592-020-01576-8. Epub 2020 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验