Chen Xue, Che Mengfen, Xu Weidong, Wu Zhongbin, Suh Yung Doug, Wu Suli, Liu Xiaowang, Huang Wei
Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
Nat Commun. 2024 Sep 16;15(1):8111. doi: 10.1038/s41467-024-51591-4.
A deep understanding of how the host matrix influences the afterglow properties of molecule dopants is crucial for designing advanced afterglow materials. Despite its appeal, the impact of defects on the afterglow performance in molecule-doped SiO matrices has remained largely unexplored. Herein, we detail the synthesis of monodisperse SiO microparticles by hydrothermally doping molecules, such as 4-phenylpyridine, 4,4'-bipyridine, and 1,4-bis(pyrid-4-yl)benzene. Our results demonstrate that hydrothermal reactions induce not only the formation of emissive defects in the SiO matrix but also enable molecule doping through SiO pseudomorphic transformation. Optical analyses reveal a remarkable afterglow activation of doped molecules, driven by a synergistic interplay of hydrogen bonding and physical fixation. Specifically, 4-phenylpyridine doping leads to an impressive 227- and 271-fold enhancement in fluorescence and afterglow, respectively, and an extraordinary 3711-fold enhancement in the afterglow lifetime of the resulting SiO MPs. We also document hybrid states involving molecule dopants and SiO defects, explaining energy transfer from molecule dopants to defects in both singlet and triplet states. The robust achievement of molecule doping provides flexibility to tailor excitation-dependent afterglow attributes while preserving angle-dependent structural colors, facilitating the creation of diverse building blocks for multiscale optical platforms for afterglow modulation and information encoding.
深入了解主体基质如何影响分子掺杂剂的余辉特性对于设计先进的余辉材料至关重要。尽管具有吸引力,但缺陷对分子掺杂的SiO基质中余辉性能的影响在很大程度上仍未得到探索。在此,我们详细介绍了通过水热掺杂分子(如4-苯基吡啶、4,4'-联吡啶和1,4-双(吡啶-4-基)苯)合成单分散SiO微粒的过程。我们的结果表明,水热反应不仅会在SiO基质中诱导发光缺陷的形成,还能通过SiO的拟晶转变实现分子掺杂。光学分析表明,在氢键和物理固定的协同作用下,掺杂分子的余辉得到了显著激活。具体而言,4-苯基吡啶掺杂导致荧光和余辉分别显著增强了227倍和271倍,所得SiO微球的余辉寿命更是大幅提高了3711倍。我们还记录了涉及分子掺杂剂和SiO缺陷的混合态,解释了分子掺杂剂在单重态和三重态下向缺陷的能量转移。分子掺杂的稳健实现为定制依赖于激发的余辉特性提供了灵活性,同时保留了依赖于角度的结构颜色,有助于为余辉调制和信息编码的多尺度光学平台创建多样化的构建模块。